8.已知函數(shù)f(x)=sinxcosx-$\sqrt{3}{cos^2}$x,則函數(shù)f(x)圖象的一條對(duì)稱軸是(  )
A.$x=\frac{5π}{12}$B.$x=\frac{π}{3}$C.$x=\frac{π}{6}$D.$x=\frac{π}{12}$

分析 先根據(jù)二倍角公式和兩角差的正弦公式化簡(jiǎn)得到f(x)=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,再根據(jù)對(duì)稱軸的定義即可求出.

解答 解:f(x)=sinxcosx-$\sqrt{3}{cos^2}$x=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,
則其對(duì)稱軸為2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,
∴x=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,
當(dāng)k=0時(shí),x=$\frac{5π}{12}$,
∴函數(shù)f(x)圖象的一條對(duì)稱軸是x=$\frac{5π}{12}$,
故選:A

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn),以及正弦函數(shù)的圖象和性質(zhì),關(guān)鍵掌握二倍角公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=-2+tsinα\end{array}\right.$(t為參數(shù)),直線l與兩個(gè)直角坐標(biāo)軸的交點(diǎn)分別是A,B.以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2sinθ,$θ∈(\frac{π}{4},\frac{3π}{4})$,半圓C的圓心是C.
(Ⅰ)求直線l的普通方程與半圓C的參數(shù)方程;
(Ⅱ)若點(diǎn)D在半圓C上,直線CD的傾斜角是2α,△ABD的面積是4,求D的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在等比數(shù)列{an}中,若a1=-1,a2+a3=-2,則其公比為-2或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,△ABC是圓O的內(nèi)接三角形,P是BA的延長(zhǎng)線上一點(diǎn),且PC切圓O于點(diǎn)C.
(1)求證:AC•PC=PA•BC;
(2)若PA=AB=BC,且PC=4,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+4xy,f(1)=1,則f(-2)=( 。
A.-2B.2C.6D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.△ABC是邊長(zhǎng)為2的等邊三角形,向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}中,a1=-2,前n項(xiàng)和Sn滿足an+1+3Sn+2=0(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在整數(shù)對(duì)(m,n)滿足$a_n^2-m{a_n}-4m-8=0$?若存在,求出所有滿足題意的整數(shù)對(duì)(m,n);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列命題正確的是(  )
A.命題?x0∈R,x${\;}_{0}^{2}$+1>3x0的否定是:?x∈R,x2+1<3x
B.命題△ABC中,若A>B,則cosA>cosB的否命題是真命題
C.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角的充要條件是:$\overrightarrow{a}$•$\overrightarrow$<0
D.ω=1是函數(shù)f(x)=sinωx-cosωx的最小正周期為2π的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若命題p是真命題,命題q是假命題,則下列命題一定是真命題的是(  )
A.p∧qB.p∨qC.(¬p)∧qD.(¬p)∨q

查看答案和解析>>

同步練習(xí)冊(cè)答案