【題目】下列兩個變量之間的關(guān)系不是函數(shù)關(guān)系的是( )

A. 出租車車費與出租車行駛的里程

B. 商品房銷售總價與商品房建筑面積

C. 鐵塊的體積與鐵塊的質(zhì)量

D. 人的身高與體重

【答案】D

【解析】

根據(jù)函數(shù)的概念來進(jìn)行判斷。

對于A選項,出租車車費實行分段收費,與出租車行駛里程成分段函數(shù)關(guān)系;

對于B選項,商品房的銷售總價等于商品房單位面積售價乘以商品房建筑面積,商品房銷售總價與商品房建筑面積之間是一次函數(shù)關(guān)系;

對于C選項,鐵塊的質(zhì)量等于鐵塊的密度乘以鐵塊的體積,鐵塊的體積與鐵塊的質(zhì)量是一次函數(shù)關(guān)系;

對于D選項,有些人又高又瘦,有些人又矮又胖,人的身高與體重之間沒有必然聯(lián)系,

因人而異,D選項中兩個變量之間的關(guān)系不是函數(shù)關(guān)系。

故選:D。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的方法種數(shù):
(1)將4個不同的小球,放進(jìn)4個不同的盒子,且沒有空盒子,共有多少種放法?
(2)將4個不同的小球,放進(jìn)3個不同的盒子,且沒有空盒子,共有多少種放法?(最后結(jié)果用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公益基金收到甲乙丙三人的20萬、25萬、30萬三筆捐款(一人捐一筆款),記者采訪這三兄弟時,甲說:乙捐的不是最少.”乙說:甲捐的比丙多.”丙說:若我捐的最少,則甲捐的不是最多.”根據(jù)這三人的回答,確定乙捐了_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機詢問150名大學(xué)生是否參加某社團(tuán)活動,得到如下的列聯(lián)表:

總計

參加

55

25

80

不參加

30

40

70

總計

85

65

150

附表:

P(K2≥k0)

0.05

0.010

0.001

k0

3.841

6.635

10.828

參照附表,得到的正確的結(jié)論是(  )

A. 在犯錯的概率不超過0.1%的前提下,認(rèn)為“是否參加該社團(tuán)活動與性別無關(guān)”

B. 在犯錯的概率不超過0.1%的前提下,認(rèn)為“是否參加該社團(tuán)活動與性別有關(guān)”

C. 有99%以上的把握認(rèn)為“是否參加該社團(tuán)活動與性別有關(guān)”

D. 有99%以上的把握認(rèn)為“是否參加該社團(tuán)活動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2+10x+10y+34=0。

(I)試寫出圓C的圓心坐標(biāo)和半徑;

(II)若圓D的圓心在直線x=-5上,且與圓C相外切,被x軸截得的弦長為10,求圓D的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 a . b 都在平面 外,以下假命題的是(

A.ab b ,則 aB.ab b ,則 a

C.a , b ,則 abD.a b ,則 ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司生產(chǎn)某款手機的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機萬只并全部銷售完,每萬只的銷售收入為萬元,且

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少萬只時,該公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知從地到地共有兩條路徑,據(jù)統(tǒng)計,經(jīng)過兩條路徑所用的時間互不影響,且經(jīng)過所用時間落在各時間段內(nèi)的頻率分布直方圖分別為下圖(1)和(2)。

現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于從地到地。

(1)為了盡最大可能在各自允許的時間內(nèi)趕到地,甲和乙應(yīng)如何選擇各自的路徑?

(2)用表示甲、乙兩人中在允許的時間內(nèi)能趕到地的人數(shù),針對(1)的選擇方案,求的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)有兩個零點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案