16.把35化為二進制數(shù)為(  )
A.100111B.110110C.100011D.100110

分析 利用“除k取余法”是將十進制數(shù)除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.

解答 解:
35÷2=17…1
17÷2=8…1
8÷2=4…0
4÷2=2…0
2÷2=1…0
1÷2=0…1
故35(10)=100011(2)
故選:C.

點評 本題考查的知識點是十進制與其它進制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.求適合下列條件的圓錐曲線的方程
(1)焦點坐標為$({\sqrt{3},0}),({-\sqrt{3},0})$,準線方程為$x=±3\sqrt{3}$的橢圓;
(2)焦點是$(±\sqrt{26},0)$,漸近線方程是$y=±\frac{3}{2}x$的雙曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{4x+1,}&{x<1}\\{{x^2}-6x+10,}&{x≥1}\end{array}}\right.$,關于a的不等式f(a)-ta+2t-2>0的解集是(a1,a2)∪(a3,+∞),若a1a2a3<0,則實數(shù)t的取值范圍是( 。
A.(-3,4)B.$(\frac{1}{2},4)$C.$(-2,\frac{1}{2})$D.(-3,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),對于x∈R都有f(x+4)=f(x)+f(2)成立,且f(-4)=-2,當x1,x2∈[0,2],且x1≠x2時,都有(x1-x2)[f(x1)-f(x2)]>0,則下列命題錯誤的是( 。
A.f(2016)=-2B.函數(shù)y=f(x)的一條對稱軸為x=-6
C.函數(shù)y=f(x)在[-8,-6]上為減函數(shù)D.函數(shù)y=f(x)在[-9,9]上有4個根

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,左、右焦點分別為F1,F(xiàn)2,四個頂點圍成的四邊形面積為4$\sqrt{2}$.
(1)求橢圓的標準方程;
(2)設O為坐標原點,過點P(0,1)的動直線與橢圓交于A,B兩點,求證:$\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在直角坐標系xOy中,一條直線過拋物線y2=4x的焦點F且與該拋物線相交于A,B兩點,其中點A在x軸上方,若該直線的傾斜角為60°,則△OAF的面積為(  )
A.$\frac{1}{2}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設集合A={x|-1≤x<3},B={x|2x-4≥x-2},求A∩B;A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)f(x)=x•ex-a有且只有一個零點,則實數(shù)a的取值集合為{$-\frac{1}{e}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知等腰△ABC中,AB=AC,AB所在直線方程為2x+y-4=0,BC邊上的中線AD所在直線方程為x-y+1=0,D(4,5).
(Ⅰ)求BC邊所在直線方程;
(Ⅱ)求B點坐標及AC邊所在直線方程.

查看答案和解析>>

同步練習冊答案