【題目】已知等差數(shù)列{an}的首項a1=1,公差d>0.且a2,a5,a14分別是等比數(shù)列{bn}的b2,b3,b4.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設(shè)數(shù)列{cn}對任意自然數(shù)n均有成立,求c1+c2+…+c2016的值.
【答案】(1)bn=3n-1;(2).
【解析】試題分析:(1)由等差數(shù)列通項公式用公差表示出,再由等比數(shù)列的性質(zhì)可求得,從而得,這樣解得,于是可得公比,進而得通項;(2)由已知首先求得;再由已知等式可得,兩式相減可得,于是有,從而可求得其前項和.
試題解析:(1)∵a2=1+d,a5=1+4d,
a14=1+13d,且a2,a5,a14成等比數(shù)列,
∴(1+4d)2=(1+d)(1+13d),
解得d=2,d=0(舍去).
∴an=1+(n-1)×2=2n-1,
又∵b2=a2=3,b3=a5=9.
∴等比數(shù)列{bn}的公比q=3,b1=1,bn=3n-1.
(2)∵,①
∴,即c1=b1a2=3.
又,②
①-②得, =an+1-an=2,
∴cn=2bn=2×3n-1(n≥2),
∴cn=
則c1+c2+c3+…+c2016
=3+2×31+2×32+…+2×32016-1
=3+2×(31+32+…+32015)
=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=ln x,g(x)=x|x|.
(1)求g(x)在x=-1處的切線方程;
(2)令F(x)=x·f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,函數(shù)f(x)=3+2sin xcos x+2cos2x且f(A)=5.
(1)求角A的大;
(2)若a=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的一個焦點與拋物線y2=-4x的焦點相同,且橢圓C上一點與橢圓C的左,右焦點F1,F2構(gòu)成的三角形的周長為.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(k,m∈R)與橢圓C交于A,B兩點,O為坐標(biāo)原點,△AOB的重心G滿足: ,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱x0是f(x)的一個“巧值點”,則下列函數(shù)中有“巧值點”的是________.
①f(x)=x2;②f(x)=e-x;③f(x)=lnx;④f(x)=tanx;⑤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線T的焦點為F,準(zhǔn)線為l,過F的直線m與T交于A,B兩點,C,D分別為A,B在l上的射影,M為AB的中點,若m與l不平行,則△CMD是( )
A. 等腰三角形且為銳角三角形
B. 等腰三角形且為鈍角三角形
C. 等腰直角三角形
D. 非等腰的直角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+3|-|2x-a|,a∈R.
(1)若不等式f(x)≤-5的解集非空,求實數(shù)a的取值范圍;
(2)若函數(shù)y=f(x)的圖象關(guān)于點對稱,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)的離心率為.
(Ⅰ)若原點到直線x+y-b=0的距離為,求橢圓的方程;
(Ⅱ)設(shè)過橢圓的右焦點且傾斜角為45°的直線l和橢圓交于A,B兩點,對于橢圓上任意一點M,總存在實數(shù)λ、μ,使等式成立,求λ2+μ2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com