【題目】某商場(chǎng)營(yíng)銷人員對(duì)某商品進(jìn)行市場(chǎng)營(yíng)銷調(diào)查,發(fā)現(xiàn)每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過統(tǒng)計(jì)得到下表:

回饋點(diǎn)數(shù)

1

2

3

4

5

銷量(百件)/天

0.5

0.6

1

1.4

1.7

(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品每天的銷量(百件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)若回饋6個(gè)點(diǎn)時(shí)該商品每天銷量;

(2)已知節(jié)日期間某地?cái)M購(gòu)買該商品的消費(fèi)群體十分龐大,營(yíng)銷調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了抽樣調(diào)查,得到如下頻數(shù)表:

返還點(diǎn)數(shù)預(yù)期值區(qū)間

頻數(shù)

20

60

60

30

20

10

(i)求這200位擬購(gòu)買該商品的消費(fèi)者對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值的樣本平均數(shù)及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替;估計(jì)值精確到0.1);

(ii)將對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,設(shè)抽出的3人中“欲望緊縮型”消費(fèi)者的人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.

參考公式及數(shù)據(jù):①;②.

【答案】(1),2百件;(2)(i)6,;(ii)2.

【解析】

(1)利用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)若回饋6個(gè)點(diǎn)時(shí)該商品每天銷量;(2)(i)利用頻率分布直方圖的平均數(shù)公式和中位數(shù)公式求樣本平均數(shù)及中位數(shù)的估計(jì)值;(ii)由題得X=1,2,3,再求的分布列及數(shù)學(xué)期望.

(1)易知,

,

從而

.

所以.

關(guān)于的線性回歸方程為,

當(dāng)時(shí),,即返回6個(gè)點(diǎn)時(shí)該商品每天銷量約為2百件.

(2)(i)根據(jù)題意,這200位擬購(gòu)買該商品的消費(fèi)者對(duì)返回點(diǎn)數(shù)的心里預(yù)期值的平均值,則 ,

所以中位數(shù)的估計(jì)值為.

(ii)抽取6名消費(fèi)者中“欲望緊縮型”消費(fèi)者人數(shù)為

“欲望膨脹型”消費(fèi)者人數(shù)為.

,.

故隨機(jī)變量的分布列為

1

2

3

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若四面體的三組對(duì)棱分別相等,即,,則________.(寫出所有正確結(jié)論的編號(hào))

①四面體每個(gè)面的面積相等

②四面體每組對(duì)棱相互垂直

③連接四面體每組對(duì)棱中點(diǎn)的線段相互垂直平分

④從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱的長(zhǎng)都可以作為一個(gè)三角形的三邊長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線M:的焦點(diǎn)為F,過焦點(diǎn)F的直線l(x軸不垂直)交拋物線M于點(diǎn)A,B,A關(guān)于x軸的對(duì)稱點(diǎn)為.

(1)求證:直線過定點(diǎn),并求出這個(gè)定點(diǎn);

(2)的垂直平分線交拋物線于CD,四邊形外接圓圓心N的橫坐標(biāo)為19,求直線AB和圓N的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

某高校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作。規(guī)定:至少正確完成其中2題的便可提交通過。已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響。

)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計(jì)算數(shù)學(xué)期望;

)試從兩位考生正確完成題數(shù)的數(shù)學(xué)期望及至少正確完成2題的概率分析比較兩位考生的實(shí)驗(yàn)操作能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一直角坐標(biāo)系中,經(jīng)過伸縮變換后,曲線C的方程變?yōu)?/span>.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線/的極坐標(biāo)方程為.

1)求曲線C和直線l的直角坐標(biāo)方程;

2)過點(diǎn)l的垂線l0CA,B兩點(diǎn),點(diǎn)Ax軸上方,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)區(qū)間;

2)當(dāng),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2021年福建省高考實(shí)行“”模式.”模式是指:“3”為全國(guó)統(tǒng)考科目語(yǔ)文、數(shù)學(xué)、外語(yǔ),所有學(xué)生必考;“1”為首選科目,考生須在高中學(xué)業(yè)水平考試的物理、歷史科目中選擇1科;“2”為再選科目,考生可在化學(xué)、生物、政治、地理4個(gè)科目中選擇2科,共計(jì)6個(gè)考試科目.

1)若學(xué)生甲在“1”中選物理,在“2”中任選2科,求學(xué)生甲選化學(xué)和生物的概率;

2)若學(xué)生乙在“1”中任選1科,在“2”中任選2科,求學(xué)生乙不選政治但選生物的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,,中點(diǎn),底面是直角梯形,,.

1)求證:平面;

2)設(shè)為棱上一點(diǎn),,試確定的值使得二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有限數(shù)列同時(shí)滿足下列兩個(gè)條件:

對(duì)于任意的),;

對(duì)于任意的),,,三個(gè)數(shù)中至少有一個(gè)數(shù)是數(shù)列中的項(xiàng).[來(lái)

1)若,且,,,求的值;

2)證明:不可能是數(shù)列中的項(xiàng);

3)求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案