設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等實(shí)根,且f′(x)=2x+2,則y=f(x)的表達(dá)式是
x2+2x+1
x2+2x+1
分析:設(shè)y=f(x)=ax2+bx+c,由題意可得△=b2-4ac=0 且f′(x)=2ax+b=2x+2,求出a、b、c的值,即可得到y(tǒng)=f(x)的表達(dá)式.
解答:解:設(shè)y=f(x)=ax2+bx+c 是二次函數(shù),∵方程f(x)=0有兩個(gè)相等實(shí)根,∴△=b2-4ac=0.
又 f′(x)=2ax+b=2x+2,
∴a=1,b=2,
∴c=1.
故y=f(x)的表達(dá)式為 f(x)=x2+2x+1,
故答案為 x2+2x+1.
點(diǎn)評(píng):本題主要考查了一元二次方程的根的分布與系數(shù)的關(guān)系,求函數(shù)的導(dǎo)數(shù),待定系數(shù)法求函數(shù)的解析式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積;
(3)若直線x=-t(0<t<1)把y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)若直線x=-t(0<t<1把y=f(x))的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)是二次函數(shù),f(0)=0且f′(x)=2x+2,則y=f(x)的表達(dá)式是:f(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案