9.下列給出四組函數(shù),表示同一函數(shù)的是( 。
A.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$B.f(x)=2x+1,g(x)=2x-1C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=1,g(x)=x0

分析 根據(jù)兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可

解答 解:對(duì)于A:f(x)=x的定義域?yàn)镽;而g(x)=$\frac{{x}^{2}}{x}$的定義域?yàn)閧x|x≠0},定義域不同,∴不是同一函數(shù);
對(duì)于B:f(x)=2x+1的定義域?yàn)镽,g(x)=2x-1的定義域?yàn)镽,但對(duì)應(yīng)關(guān)系不同,∴不是同一函數(shù);
對(duì)于C:f(x)=x的定義域?yàn)镽,g(x)=$\root{3}{{x}^{3}}$=x的定義域?yàn)镽,定義域相同,對(duì)應(yīng)關(guān)系也相同,∴是同一函數(shù);
對(duì)于D:f(x)=1的定義域?yàn)镽,g(x)=x0的定義域?yàn)閧x|x≠0},定義域不同,∴不是同一函數(shù);
故選:C.

點(diǎn)評(píng) 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)函數(shù)y=x3與y=($\frac{1}{2}$)x的圖象的交點(diǎn)為(x0,y0),若x0所在的區(qū)間是(k,k+1)(k∈Z),則k=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{x}$+x.
(1)判斷并證明f(x)的奇偶性;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上為增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[1,3]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.1 887與2 091的最大公約數(shù)是51.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式$\frac{x+1}{x+2}$≥0的解集為( 。
A.{x|x≥-1或x≤-2}B.{x|-2≤x≤-1}C.{x|1≤x≤2}D.{x|x≥-1或x<-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)g(x)是y=ax(a>0且a≠1)的反函數(shù),若函數(shù)f(x)=b+g(x)的定義域和值域都是[1,3],則$\frac{a}$=( 。
A.$\sqrt{3}$B.$\sqrt{3}$或$\frac{\sqrt{3}}{9}$C.$\frac{\sqrt{3}}{9}$D.$\sqrt{3}$或$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知角α的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊在x軸正半軸上,終邊過點(diǎn)(m,-2).若cosα=$\frac{\sqrt{5}}{5}$,求
(1)tanα的值
(2)sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.把正整數(shù)按上小下大、左小右大的原則排成如圖三角形數(shù)表(每行比上一行多一個(gè)數(shù)):設(shè)ai,j(i、j∈N*)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個(gè)數(shù),如a4,2=8.若ai,j=2015,則i、j的值分別為63,62.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)令ω=1,判斷函數(shù)$F(x)=f(x)+f(x-\frac{π}{2})$的奇偶性并說明理由;
(2)已知在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=$\sqrt{3}$,b=2,sin B=$\frac{\sqrt{6}}{3}$,求F(x)+4cos(2A+$\frac{π}{6}$),(x∈[0,$\frac{11π}{12}$])的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案