【題目】2019年2月25日,第屆羅馬尼亞數(shù)學(xué)大師賽(簡稱)于羅馬尼亞首都布加勒斯特閉幕,最終成績揭曉,以色列選手排名第一,而中國隊無一人獲得金牌,最好成績是獲得銀牌的第名,總成績排名第.而在分量極重的國際數(shù)學(xué)奧林匹克()比賽中,過去拿冠軍拿到手軟的中國隊,也已經(jīng)有連續(xù)年沒有拿到冠軍了.人們不禁要問“中國奧數(shù)究竟怎么了?”,一時間關(guān)于各級教育主管部門是否應(yīng)該下達“禁奧令”成為社會熱點.某重點高中培優(yōu)班共人,現(xiàn)就這人“禁奧令”的態(tài)度進行問卷調(diào)查,得到如下的列聯(lián)表:
不應(yīng)下“禁奧令” | 應(yīng)下“禁奧令” | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
若采用分層抽樣的方法從人中抽出人進行重點調(diào)查,知道其中認為不應(yīng)下“禁奧令”的同學(xué)共有人.
(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為對下“禁奧令”的態(tài)度與性別有關(guān)?請說明你的理由;
(2)現(xiàn)從這人中抽出名男生、名女生,記此人中認為不應(yīng)下“禁奧令”的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)有的把握;(2)見解析.
【解析】
(1)根據(jù)所給數(shù)據(jù)可補充列聯(lián)表,利用公式求得 ,與鄰界值比較,即可得到結(jié)論;(2)所有可能取值有,結(jié)合組合知識,利用古典概型概率公式求出各隨機變量對應(yīng)的概率,從而可得分布列,進而利用期望公式可得的數(shù)學(xué)期望.
(1)列聯(lián)表補充如下:
所以的觀測值,
所以有的把握認為是否應(yīng)該下“禁奧令”與性別有關(guān).
(2)由題意,可知在這人中,男、女生各人,其中男生有人、女生有人認為不應(yīng)該下“禁奧令”,所有可能取值有
所以的分布列是
所以(人)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線Γ的方程為y2=4x,點P的坐標為(1,1).
(1)過點P,斜率為﹣1的直線l交拋物線Γ于U,V兩點,求線段UV的長;
(2)設(shè)Q是拋物線Γ上的動點,R是線段PQ上的一點,滿足2,求動點R的軌跡方程;
(3)設(shè)AB,CD是拋物線Γ的兩條經(jīng)過點P的動弦,滿足AB⊥CD.點M,N分別是弦AB與CD的中點,是否存在一個定點T,使得M,N,T三點總是共線?若存在,求出點T的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若實數(shù)為整數(shù),且對任意的時,都有恒成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(1)求函數(shù)在上的值域
(2)設(shè),若方程有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,為左焦點,為上頂點,為右頂點,若,拋物線的頂點在坐標原點,焦點為.
(1)求的標準方程;
(2)是否存在過點的直線,與和交點分別是和,使得?如果存在,求出直線的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為實數(shù)常數(shù))
(1)當(dāng)時,求函數(shù)在上的單調(diào)區(qū)間;
(2)當(dāng)時,成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知,城市公交車的數(shù)量太多會造成資源的浪費,太少又難以滿足乘客的需求,為此,某市公交公司在某站臺的50名候車乘客中隨機抽取10名,統(tǒng)計了他們的候車時間(單位:分鐘),得到下表.
候車時間 | 人數(shù) |
1 | |
4 | |
2 | |
2 | |
1 |
(1)估計這10名乘客的平均候車時間(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替);
(2)估計這50名乘客的候車時間少于10分鐘的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知數(shù)列為等差數(shù)列,其前n項和為.若,試分別比較與、與的大小關(guān)系.
(2)已知數(shù)列為等差數(shù)列,的前n項和為.證明:若存在正整數(shù)k,使,則.
(3)在等比數(shù)列中,設(shè)的前n項乘積,類比(2)的結(jié)論,寫出一個與有關(guān)的類似的真命題,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,平面平面,四邊形為邊長為2的菱形, 為直角梯形,四邊形為平行四邊形,且, , .
(1)若, 分別為, 的中點,求證: 平面;
(2)若, 與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com