【題目】“新車嗨翻天!首付3000元起開新車”這就是毛豆新車網(wǎng)打出來(lái)的廣告語(yǔ).某人看到廣告,興奮不已,計(jì)劃于2019年1月在該網(wǎng)站購(gòu)買一輛某品牌汽車,他從當(dāng)?shù)亓私獾浇鍌(gè)月該品牌汽車實(shí)際銷量如表:
月份 | 2018.08 | 2018.09 | 2018.10 | 2018.11 | 2018.12 |
月份編號(hào)t | 1 | 2 | 3 | 4 | 5 |
銷量y(萬(wàn)輛) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放破噷?shí)際銷量y(萬(wàn)輛)與月份編號(hào)t之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求y關(guān)于t的線性回歸方程,并估計(jì)2019年1月份該品牌汽車的銷量:
(2)為了增加銷量,廠家和毛豆新車網(wǎng)聯(lián)合推出對(duì)購(gòu)該品牌車進(jìn)行補(bǔ)貼.已知某地?cái)M購(gòu)買該品牌汽車的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的購(gòu)車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
補(bǔ)貼金額預(yù)期值 區(qū)間(萬(wàn)元) | [1,2) | [2,3) | [3,4) | [4,5) | [5,6) | [6,7) |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購(gòu)買該品牌汽車的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取3人中對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望E(ξ)
參考公式及數(shù)據(jù):①回歸方程,其中,;②.
【答案】(1)y關(guān)于t的線性回歸方程為y=0.32t+0.08,2019年1月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量約為2萬(wàn)輛(2)詳見解析
【解析】
(1)分別求得,進(jìn)而求得,再代入樣本中心點(diǎn)求即可.
(2)根據(jù)二項(xiàng)分布定理求解分布列與數(shù)學(xué)期望即可.
(1),,
,,
則y關(guān)于t的線性回歸方程為y=0.32t+0.08,
當(dāng)t=6時(shí),y=2.00,
即2019年1月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量約為2萬(wàn)輛.
(2)根據(jù)給定的頻數(shù)表可知,任意抽取1名擬購(gòu)買該品牌汽車的消費(fèi)者,對(duì)補(bǔ)貼金額的心理預(yù)期值
不低于3萬(wàn)元的概率為0.6,
由題意可知ξ~(3,0.6),
P(ξ=0)0.064,
P(ξ=1)0.288,
P(ξ=2)0.432,
P(ξ=3)0.216,
分布列為:
ξ | 0 | 1 | 2 | 3 |
P | 0.064 | 0.288 | 0.432 | 0.216 |
E(ξ)=3×0.6=1.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在棱錐中,為矩形,面,
(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說(shuō)明理由;
(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,分別為,的中點(diǎn),,.
(1)求證:;
(2)若直線和平面所成角的正弦值等于,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列說(shuō)法:
①一支田徑隊(duì)有男女運(yùn)動(dòng)員98人,其中男運(yùn)動(dòng)員有56人.按男、女比例用分層抽樣的方法,從全體運(yùn)動(dòng)員中抽出一個(gè)容量為28的樣本,那么應(yīng)抽取女運(yùn)動(dòng)員人數(shù)是12人;
②在某項(xiàng)測(cè)量中,測(cè)量結(jié)果X服從正態(tài)分布N(1,σ2)(σ>0),若X在(0,1)內(nèi)取值的概率為0.4,則X在(0,2)內(nèi)取值的概率為0.8.
③廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為2x+256,這表明廢品率每增加1%,生鐵成本大約增加258元;
④為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防作用”,利用2×2列聯(lián)表計(jì)算得K2的觀測(cè)值k≈3.918,經(jīng)查對(duì)臨界值表知P(K2≥3841)≈0.05,由此,得出以下判斷:在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“這種血清能起到預(yù)防的作用”,
正確的有( )
A.①②④B.①②③C.①③D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),將C上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的3倍,得曲線C1.以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求C1的極坐標(biāo)方程
(2)設(shè)M,N為C1上兩點(diǎn),若OM⊥ON,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的邊長(zhǎng)為2, 是的中點(diǎn),以點(diǎn)為圓心, 長(zhǎng)為半徑作圓,點(diǎn)是該圓上的任一點(diǎn),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會(huì)影響第二段生產(chǎn)成品的等級(jí),具體見下表:
第一段生產(chǎn)的半成品質(zhì)量指標(biāo) | 或 | 或 | |
第二段生產(chǎn)的成品為一等品概率 | 0.2 | 0.4 | 0.6 |
第二段生產(chǎn)的成品為二等品概率 | 0.3 | 0.3 | 0.3 |
第二段生產(chǎn)的成品為三等品概率 | 0.5 | 0.3 | 0.1 |
從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:
若生產(chǎn)一件一等品、二等品、三等品的利潤(rùn)分別是元、元、元.
(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;
(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤(rùn);
(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線第一段,價(jià)格是萬(wàn)元,使用壽命是年,安裝這種設(shè)備后,流水線第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請(qǐng)你幫該公司作出決策,是否要購(gòu)買該設(shè)備?說(shuō)明理由.
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.
(1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過(guò)原點(diǎn),求出直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com