【題目】新車嗨翻天!首付3000元起開新車這就是毛豆新車網(wǎng)打出來(lái)的廣告語(yǔ).某人看到廣告,興奮不已,計(jì)劃于20191月在該網(wǎng)站購(gòu)買一輛某品牌汽車,他從當(dāng)?shù)亓私獾浇鍌(gè)月該品牌汽車實(shí)際銷量如表:

月份

2018.08

2018.09

2018.10

2018.11

2018.12

月份編號(hào)t

1

2

3

4

5

銷量y(萬(wàn)輛)

0.5

0.6

1

1.4

1.7

1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放破噷?shí)際銷量y(萬(wàn)輛)與月份編號(hào)t之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求y關(guān)于t的線性回歸方程,并估計(jì)20191月份該品牌汽車的銷量:

2)為了增加銷量,廠家和毛豆新車網(wǎng)聯(lián)合推出對(duì)購(gòu)該品牌車進(jìn)行補(bǔ)貼.已知某地?cái)M購(gòu)買該品牌汽車的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的購(gòu)車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

補(bǔ)貼金額預(yù)期值

區(qū)間(萬(wàn)元)

[1,2

[23

[3,4

[45

[5,6

[6,7

頻數(shù)

20

60

60

30

20

10

將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購(gòu)買該品牌汽車的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取3人中對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ

參考公式及數(shù)據(jù):①回歸方程,其中;②

【答案】(1)y關(guān)于t的線性回歸方程為y0.32t+0.08,20191月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量約為2萬(wàn)輛(2)詳見解析

【解析】

(1)分別求得,進(jìn)而求得,再代入樣本中心點(diǎn)求即可.

(2)根據(jù)二項(xiàng)分布定理求解分布列與數(shù)學(xué)期望即可.

1,,

,,

y關(guān)于t的線性回歸方程為y0.32t+0.08,

當(dāng)t6時(shí),y2.00,

20191月份當(dāng)?shù)卦撈放菩履茉雌嚨匿N量約為2萬(wàn)輛.

2)根據(jù)給定的頻數(shù)表可知,任意抽取1名擬購(gòu)買該品牌汽車的消費(fèi)者,對(duì)補(bǔ)貼金額的心理預(yù)期值

不低于3萬(wàn)元的概率為0.6,

由題意可知ξ~(3,0.6),

Pξ00.064,

Pξ10.288,

Pξ20.432,

Pξ30.216,

分布列為:

ξ

0

1

2

3

P

0.064

0.288

0.432

0.216

Eξ)=3×0.61.8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在棱錐中,為矩形,,

(1)在上是否存在一點(diǎn),使,若存在確定點(diǎn)位置,若不存在,請(qǐng)說(shuō)明理由;

(2)當(dāng)中點(diǎn)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,分別為的中點(diǎn),,.

(1)求證:;

(2)若直線和平面所成角的正弦值等于,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列說(shuō)法:

①一支田徑隊(duì)有男女運(yùn)動(dòng)員98人,其中男運(yùn)動(dòng)員有56人.按男、女比例用分層抽樣的方法,從全體運(yùn)動(dòng)員中抽出一個(gè)容量為28的樣本,那么應(yīng)抽取女運(yùn)動(dòng)員人數(shù)是12人;

②在某項(xiàng)測(cè)量中,測(cè)量結(jié)果X服從正態(tài)分布N1,σ2)(σ0),若X在(0,1)內(nèi)取值的概率為0.4,則X在(0,2)內(nèi)取值的概率為0.8

③廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為2x+256,這表明廢品率每增加1%,生鐵成本大約增加258元;

④為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0這種血清不能起到預(yù)防作用,利用2×2列聯(lián)表計(jì)算得K2的觀測(cè)值k≈3.918,經(jīng)查對(duì)臨界值表知PK2≥3841≈0.05,由此,得出以下判斷:在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為這種血清能起到預(yù)防的作用,

正確的有(

A.①②④B.①②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為α為參數(shù)),將C上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的3倍,得曲線C1.以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

1)求C1的極坐標(biāo)方程

2)設(shè)M,NC1上兩點(diǎn),若OMON,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形的邊長(zhǎng)為2, 的中點(diǎn),以點(diǎn)為圓心, 長(zhǎng)為半徑作圓,點(diǎn)是該圓上的任一點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)某種產(chǎn)品,一條流水線年產(chǎn)量為件,該生產(chǎn)線分為兩段,流水線第一段生產(chǎn)的半成品的質(zhì)量指標(biāo)會(huì)影響第二段生產(chǎn)成品的等級(jí),具體見下表:

第一段生產(chǎn)的半成品質(zhì)量指標(biāo)

第二段生產(chǎn)的成品為一等品概率

0.2

0.4

0.6

第二段生產(chǎn)的成品為二等品概率

0.3

0.3

0.3

第二段生產(chǎn)的成品為三等品概率

0.5

0.3

0.1

從第一道生產(chǎn)工序抽樣調(diào)查了件,得到頻率分布直方圖如圖:

若生產(chǎn)一件一等品、二等品、三等品的利潤(rùn)分別是元、元、元.

(Ⅰ)以各組的中間值估計(jì)為該組半成品的質(zhì)量指標(biāo),估算流水線第一段生產(chǎn)的半成品質(zhì)量指標(biāo)的平均值;

(Ⅱ)將頻率估計(jì)為概率,試估算一條流水線一年能為該公司創(chuàng)造的利潤(rùn);

(Ⅲ)現(xiàn)在市面上有一種設(shè)備可以安裝到流水線第一段,價(jià)格是萬(wàn)元,使用壽命是年,安裝這種設(shè)備后,流水線第一段半成品的質(zhì)量指標(biāo)服從正態(tài)分布,且不影響產(chǎn)量.請(qǐng)你幫該公司作出決策,是否要購(gòu)買該設(shè)備?說(shuō)明理由.

(參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.

1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過(guò)原點(diǎn),求出直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案