【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可參加抽獎,抽獎有兩種方案可供選擇. 方案一:從裝有4個紅球和2個白球的不透明箱中,隨機摸出2個球,若摸出的2個球都是紅球則中獎,否則不中獎;
方案二:擲2顆骰子,如果出現(xiàn)的點數(shù)至少有一個為4則中獎,否則不中獎.(注:骰子(或球)的大小、形狀、質(zhì)地均相同)
(Ⅰ)有顧客認為,在方案一種,箱子中的紅球個數(shù)比白球個數(shù)多,所以中獎的概率大于 .你認為正確嗎?請說明理由;
(Ⅱ)如果是你參加抽獎,你會選擇哪種方案?請說明理由.

【答案】解:(Ⅰ)將4個紅球分別記為a1,a2,a3,a4,2個白球分別記為b1,b2,

則從箱中隨機摸出2個球有以下結(jié)果:

{a1,a2},{a1,a3},{a1,a4},{a1,b1},{a1,b2},{a2,a3},

{a2,a4},{a2,b1},{a2,b2},{a3,a4},{a3,b1},{a3,b2},

{a4,b1},{a4,b2},{b1,b2},總共15種,

其中2個都是紅球的有{a1,a2},{a1,a3},{a1,a4},{a2,a3},{a2,a4},{a3,a4}共6 種,

所以方案一中獎的概率為 ,

所以顧客的想法是錯誤的.

(Ⅱ)拋擲2顆骰子,所有基本事件共有36種,

其中出現(xiàn)的點數(shù)至少有一個4的基本事件有(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(4,1),(4,2),(4,3),(4,5),(4,6)共11種,

所以方案二中獎的概率為

所以應(yīng)該選擇方案一.


【解析】(Ⅰ)將4個紅球分別記為a1,a2,a3,a4,2個白球分別記為b1,b2,利用列舉法求出方案一中獎的概率,由此得到顧客的想法是錯誤的.(Ⅱ)拋擲2顆骰子,所有基本事件共有36種,利用列法求出出現(xiàn)的點數(shù)至少有一個4的基本事件種數(shù),從而求出方案二中獎的概率,從而得到應(yīng)該選擇方案一.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)實數(shù)a∈R,函數(shù) 是R上的奇函數(shù). (Ⅰ)求實數(shù)a的值;
(Ⅱ)當x∈(1,1)時,求滿足不等式f(1m)+f(1m2)<0的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四個物體同時從某一點出發(fā)向同一個方向運動,其路程fi(x)(i=1,2,3,4)關(guān)于時間x(x≥0)的函數(shù)關(guān)系式分別為 , ,f3(x)=x,f4(x)=log2(x+1),有以下結(jié)論: ①當x>1時,甲走在最前面;
②當x>1時,乙走在最前面;
③當0<x<1時,丁走在最前面,當x>1時,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號為(把正確結(jié)論的序號都填上,多填或少填均不得分).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ln(1﹣ )+1,則f(﹣7)+f(﹣5 )+f(﹣3)+f(﹣1)+f(3 )+f( 5)+f(7 )+f( 9)=(
A.0
B.4
C.8
D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,(x>0且a≠1)的圖象經(jīng)過點(﹣2,3).
(Ⅰ)求a的值,并在給出的直角坐標系中畫出y=f(x)的圖象;
(Ⅱ)若f(x)在區(qū)間(m,m+1)上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 + =1(a>b>0)右頂點與右焦點的距離為 ﹣1,短軸長為2 . (Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點F的直線與橢圓分別交于A、B兩點,若三角形OAB的面積為 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,三角形ABC為等腰直角三角形,AC=BC= ,AA1=1,點D是AB的中點.
(1)求證:AC1∥平面CDB1;
(2)二面角B1﹣CD﹣B的平面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)=2sin(180°﹣x)+cos(﹣x)﹣sin(450°﹣x)+cos(90°+x).
(1)若f(α)= α∈(0°,180°),求tanα;
(2)若f(α)=2sinα﹣cosα+ ,求sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五面體ABCDEF中,F(xiàn)A⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE= AD.
(1)求異面直線BF與DE所成的角的大;
(2)證明平面AMD⊥平面CDE;
(3)求銳二面角A﹣CD﹣E的余弦值.

查看答案和解析>>

同步練習冊答案