已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若處的切線與直線垂直,求證:對任意,都有
(3)若,對于任意,都有成立,求實(shí)數(shù)的取值范圍.

(1)上遞增,
(2)主要是根據(jù)題意,由(1)得:上遞增來得到最值,進(jìn)而證明。
(3)

解析試題分析:.解:(1)當(dāng)   2分
上遞增  4分
(2)  6分
由(1)得:上遞增  6分
  8分
  10分
(3)設(shè),由(1)得:
等價于
即:
上為減函數(shù)   13分

恒成立
得:  16分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了運(yùn)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的運(yùn)用,屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)
(1)當(dāng)時,對任意R,存在R,使,求實(shí)數(shù)的取值范圍;
(2)若對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
⑴求函數(shù)的單調(diào)區(qū)間;
⑵記函數(shù),當(dāng)時,上有且只有一個極值點(diǎn),求實(shí)數(shù)的取值范圍;
⑶記函數(shù),證明:存在一條過原點(diǎn)的直線的圖象有兩個切點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)求在區(qū)間上的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為,對于任意的,函數(shù) 的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;  
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),當(dāng)時,取得極大值;當(dāng)時,取得極小值.
、、的值;
處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克)滿足關(guān)系式,其中3<x<6,a 為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克。
(I)求a的值
(II)若該商品的成品為3元/千克,試確定銷售價格x的值,使商場每日銷售該商品所獲得的利潤最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若曲線處的切線互相平行,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知時有極大值6,在時有極小值,求a,b,c的值;并求區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案