打開(kāi)“幾何畫(huà)板”軟件進(jìn)行如下操作:
①用畫(huà)圖工具在工作區(qū)畫(huà)一個(gè)大小適中的圖C;
②用取點(diǎn)工具分別在圓C上和圓C外各取一個(gè)點(diǎn)A,B;
③用構(gòu)造菜單下對(duì)應(yīng)命令作出線(xiàn)段AB的垂直平分線(xiàn)
④作出直線(xiàn)AC。
設(shè)直線(xiàn)AC與直線(xiàn)相交于點(diǎn)P,當(dāng)點(diǎn)B為定點(diǎn),點(diǎn)A在圓C上運(yùn)動(dòng)時(shí),點(diǎn)P的軌跡是(   )
A、橢圓       B、雙曲線(xiàn)       C、拋物線(xiàn)       D、圓
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn)經(jīng)過(guò)橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),則該橢圓的離心率為.
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題


設(shè)集合A={1,2,3,4},m,n∈A,則方程表示焦點(diǎn)在x軸上的橢圓有
A.6個(gè)B.8個(gè)C.12個(gè)D.16個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
在平面直角坐標(biāo)系xoy,已知圓心在第二象限、半徑為的圓C與直線(xiàn)y=x相切于坐標(biāo)原點(diǎn)O。橢圓與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10。
(1)求圓C的方程;
(2)在圓C上存在異于原點(diǎn)的點(diǎn)Q,使Q到橢圓右焦點(diǎn)F的距離等于線(xiàn)段OF的長(zhǎng),請(qǐng)求出Q點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)如圖,已知橢圓=1(a>b>0)過(guò)點(diǎn)(1,),離心率為,左、右焦點(diǎn)分別為F1、F2. 點(diǎn)P為直線(xiàn)l:x+y=2上且不在x軸上的任意一點(diǎn),直線(xiàn)PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D,O為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)PF1、PF2的斜率分別為k1、k2, 證明:=2;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)(理科)已知以原點(diǎn)為中心的橢圓的一條準(zhǔn)線(xiàn)方程為,離心率,是橢圓上的動(dòng)點(diǎn).
(1)若點(diǎn)的坐標(biāo)分別是,求的最大值;
(2)如圖,點(diǎn)的坐標(biāo)為,是圓上的點(diǎn),點(diǎn)是點(diǎn)軸上的射影,點(diǎn)滿(mǎn)足條件:,求線(xiàn)段的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為18,
一個(gè)焦點(diǎn)的坐標(biāo)是(3,0),則橢圓的標(biāo)準(zhǔn)方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,已知△頂點(diǎn)
分別為橢圓的兩個(gè)焦點(diǎn),頂點(diǎn)在該橢圓上,則=_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知曲線(xiàn),則“”是“曲線(xiàn)C表示焦點(diǎn)在軸上的橢圓”的______________條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案