【題目】已知集合,元素成為集合的特征元素,對于中的元素與,定義:.當時,若a是集合中的非特征元素,則的概率為___.
【答案】
【解析】
根據(jù)題意,先得到,分別確定中有“個,個,個,個,個,個,個,個,個”所對應的基本事件個數(shù),確定所包含的基本事件個數(shù),基本事件個數(shù)比即為所求概率.
由題意,當時,,
則,
又,
所以取值只能為或;
當中有個時,,此時共包含個基本事件;
當中有個時,,此時共包含個基本事件;
當中有個時,,此時共包含個基本事件;
當中有個時,,此時共包含個基本事件;
當中有個時,,此時共包含個基本事件;
當中有個時,,此時共包含個基本事件;
當中有個時,,此時共包含個基本事件;
當中有個時,,此時共包含個基本事件;
當中有個時,,此時共包含個基本事件;
因此的概率為
.
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】已知為正整數(shù),各項均為正整數(shù)的數(shù)列滿足:,記數(shù)列的前項和為.
(1)若,求的值;
(2)若,求的值;
(3)若為奇數(shù),求證:“”的充要條件是“為奇數(shù)”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面α∩平面β=l,A,C是α內不同的兩點,B,D是β內不同的兩點,且A,B,C,D直線l,M,N分別是線段AB,CD的中點.下列判斷正確的是( 。
A.若ABCD,則MNl
B.若M,N重合,則ACl
C.若AB與CD相交,且ACl,則BD可以與l相交
D.若AB與CD是異面直線,則MN不可能與l平行
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面積為6,求BC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為D,若存在實常數(shù)及,對任意,當且時,都有成立,則稱函數(shù)具有性質.
(1)判斷函數(shù)是否具有性質,并說明理由;
(2)若函數(shù)具有性質,求及應滿足的條件;
(3)已知函數(shù)不存在零點,當時具有性質(其中,),記,求證:數(shù)列為等比數(shù)列的充要條件是或.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,側面為等邊三角形,且垂直于底面, ,分別是的中點.
(1)證明:平面平面;
(2)已知點在棱上且,求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+lnx(a∈R).
(1)當a=時,求f(x)在區(qū)間[1,e]上的最大值和最小值;
(2)如果函數(shù)g(x),f1(x),f2(x),在公共定義域D上,滿足f1(x)<g(x)<f2(x),那么就稱g(x)為f1(x),f2(x)的“活動函數(shù)”.已知函數(shù). 。若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“活動函數(shù)”,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當今世界科技迅猛發(fā)展,信息日新月異.為增強全民科技意識,提高公眾科學素養(yǎng),某市圖書館開展了以“親近科技、暢想未來”為主題的系列活動,并對不同年齡借閱者對科技類圖書的情況進行了調查.該圖書館從只借閱了一本圖書的借閱者中隨機抽取100名,數(shù)據(jù)統(tǒng)計如表:
借閱科技類圖書(人) | 借閱非科技類圖書(人) | |
年齡不超過50歲 | 20 | 25 |
年齡大于50歲 | 10 | 45 |
(1)是否有99%的把握認為年齡與借閱科技類圖書有關?
(2)該圖書館為了鼓勵市民借閱科技類圖書,規(guī)定市民每借閱一本科技類圖書獎勵積分2分,每借閱一本非科技類圖書獎勵積分1分,積分累計一定數(shù)量可以用積分換購自己喜愛的圖書.用表中的樣本頻率作為概率的估計值.
(i)現(xiàn)有3名借閱者每人借閱一本圖書,記此3人增加的積分總和為隨機變量ξ,求ξ的分布列和數(shù)學期望;
(ii)現(xiàn)從只借閱一本圖書的借閱者中選取16人,則借閱科技類圖書最有可能的人數(shù)是多少?
附:K2,其中n=a+b+c+d.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com