分析 利用導(dǎo)數(shù)的運算法則化簡已知條件,化簡所求的表達(dá)式,利用基本不等式求解最值即可.
解答 解:log2(x+y)=log2x+log2y,可得x,y>0,x+y=xy.
$\frac{4x}{x-1}$+$\frac{9y}{y-1}$=4+$\frac{4}{x-1}$+9+$\frac{9}{y-1}$=13+$\frac{4y+9x-13}{xy-x-y+1}$=4y+9x=(4y+9x)($\frac{1}{x}+\frac{1}{y}$)=13+$\frac{4y}{x}+\frac{9x}{y}$≥13+2$\sqrt{\frac{4y}{x}•\frac{9x}{y}}$=25.
當(dāng)且僅當(dāng)x=$\frac{5}{3}$,y=$\frac{5}{2}$時表達(dá)式取得最小值.
故答案為:25.
點評 本題考查對數(shù)運算法則的應(yīng)用,基本不等式在最值中的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺 | |
B. | 兩個底面平行且相似,其余各面都是梯形的多面體是棱臺 | |
C. | 棱臺的底面是兩個相似的正方形 | |
D. | 棱臺的側(cè)棱延長后必交于一點 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,2] | B. | {-1,0,1} | C. | {-2,-1,0,1,2} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3-2] | B. | (-3-2]∪[0,$\frac{5}{2}$) | C. | (-∞,-3]∪[$\frac{5}{2}$,+∞) | D. | (-∞,-3)∪[$\frac{5}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com