【題目】已知函數(shù).

1)當時,求函數(shù)的單調區(qū)間;

2)設函數(shù),若,且上恒成立,求的取值范圍;

3)設函數(shù),若,且上存在零點,求的取值范圍.

【答案】(1)函數(shù)的單調減區(qū)間為,單調增區(qū)間為;(2);(3)

【解析】

1)求導后,根據(jù)導函數(shù)的符號即可確定單調區(qū)間;(2)分別在兩種情況下,判斷恒成立的條件;當時,利用二次函數(shù)的性質,結合可構造不等式求得的范圍;當時,利用分離變量法得到恒成立,進而通過求解右側函數(shù)最小值得到的范圍;兩個范圍取交集即為最終結果;(3)將函數(shù)在上存在零點轉化為上有解的問題;通過討論的正負可分離變量變?yōu)?/span>,利用導數(shù)求解不等式右側函數(shù)的最大值得到結果.

1)當時,

得:

函數(shù)的定義域為

時,;當時,,

函數(shù)的單調減區(qū)間為,單調增區(qū)間為

2)由得:.

時,恒成立

,即時,恒成立;

,即時,

解得:

綜上所述:

時,由恒成立得:恒成立

,則.

得:

時,;當時,

綜上所述:的取值范圍為:

3

上存在零點 上有解

上有解

,即

上有解

,則

得:

時,;當時,

,即 .

,則

同理可證:

上單調遞減,在上單調遞增

,故

的取值范圍為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為考察某種藥物預防疾病的效果,進行動物試驗,調查了 105 個樣本,統(tǒng)計結果為:服藥的共有 55 個樣本,服藥但患病的仍有 10 個樣本,沒有服藥且未患病的有 30個樣本.

(1)根據(jù)所給樣本數(shù)據(jù)完成 列聯(lián)表中的數(shù)據(jù);

(2)請問能有多大把握認為藥物有效?

(參考公式:獨立性檢驗臨界值表

概率

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

患病

不患病

合計

服藥

沒服藥

合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,直線L,曲線C的參數(shù)方程為為參數(shù))

求直線L和曲線C的普通方程;

在曲線C上求一點Q,使得Q到直線L的距離最小,并求出這個最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓經過為坐標原點,線段的中點在圓上.

(1)求的方程;

(2)直線不過曲線的右焦點,與交于兩點,且與圓相切,切點在第一象限, 的周長是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為點,左、右頂點分別為,長軸長為,橢圓上任意一點(不與重合)與連線的斜率乘積均為.

(1)求橢圓的標準方程;

(2)如圖,過點的直線與橢圓交于兩點,過點的直線與橢圓交于兩點,且,試問:四邊形可否為菱形?并請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市一次全市高中男生身高統(tǒng)計調查數(shù)據(jù)顯示:全市10萬名男生的身高服從正態(tài)分布.現(xiàn)從某學校高中男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于160cm190cm之間,將身高的測量結果按如下方式分成5組:第1[160,166),第2[166,172)...,第5[184190]下表是按上述分組方法得到的頻率分布表:

分組

[160,166)

[166,172)

[172178)

[178,184)

[184,190]

人數(shù)

3

10

24

10

3

50個數(shù)據(jù)的平均數(shù)和方差分別比10萬個數(shù)據(jù)的平均數(shù)和方差多16.68,且這50個數(shù)據(jù)的方差為.(同組中的身高數(shù)據(jù)用該組區(qū)間的中點值作代表)

(1);

(2)給出正態(tài)分布的數(shù)據(jù):,.

(i)若從這10萬名學生中隨機抽取1名,求該學生身高在(169,179)的概率;

(ii)若從這10萬名學生中隨機抽取1萬名,記為這1萬名學生中身高在(169,184)的人數(shù),求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經過兩點,且圓心在直線上.

(1)求圓的方程;

(2)設圓軸相交于、兩點,點為圓上不同于、的任意一點,直線、軸于、點.當點變化時,以為直徑的圓是否經過圓內一定點?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)實施光盤行動以后,某自助啤酒吧也制定了自己的行動計劃,進店的每一位客人需預交元,啤酒根據(jù)需要自己用量杯量取,結賬時,根據(jù)每桌剩余酒量,按一定倍率收費(如下表),每桌剩余酒量不足升的,按升計算(如剩余升,記為剩余).例如:結賬時,某桌剩余酒量恰好為升,則該桌的每位客人還應付.統(tǒng)計表明飲酒量與人數(shù)有很強的線性相關關系,下面是隨機采集的組數(shù)據(jù)(其中表示飲酒人數(shù),()表示飲酒量):,,,,.

剩余酒量(單位:升)

升以上(含升)

結賬時的倍率

1)求由這組數(shù)據(jù)得到的關于的回歸直線方程;

2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了升啤酒,這時,酒吧服務生對小王說,根據(jù)他的經驗,小王和朋友量取的啤酒可能喝不完,可以考慮再邀請位或位朋友一起來飲酒,會更劃算.試向小王是否該接受服務生的建議?

參考數(shù)據(jù):回歸直線的方程是,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)上是單調遞增函數(shù),求實數(shù)的取值范圍;

(Ⅱ)若,對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案