【題目】已知數(shù)列{an}滿(mǎn)足:對(duì)任意的n∈N*均有an+1=kan+3k﹣3,其中k為不等于0與1的常數(shù),若ai∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,則滿(mǎn)足條件的a1所有可能值的和為 .
【答案】
【解析】解:∵an+1=kan+3k﹣3, ∴an+1+3=k(an+3),
∴①若a1=﹣3,則a1+1+3=k(a1+3)=0,a2=﹣3,同理可得,a3=a4=a5=﹣3,即a1=﹣3復(fù)合題意;
②若a1≠﹣3,k為不等于0與1的常數(shù),則數(shù)列{an+3}是以k為公比的等比數(shù)列,
∵ai∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,
an+3可以取﹣675,﹣75,25,225,
∵﹣75=25×(﹣3),225=﹣75×(﹣3),﹣675=225×(﹣3),
∴若公比|k|>1,則k=﹣3,由a2+3=22+3=﹣3(a1+3)得:a1=﹣ ﹣3=﹣ ;
若公比|k|<1,則k=﹣ ,由a2+3=﹣675=﹣ (a1+3)得:a1=2025﹣3=2022;
綜上所述,滿(mǎn)足條件的a1所有可能值為﹣3,﹣ ,2022.
∴a1所有可能值的和為:﹣3﹣ +2022= .
所以答案是: .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的通項(xiàng)公式的相關(guān)知識(shí),掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn) 與定點(diǎn) 的距離和它到定直線 的距離的比是 ∶ ,記點(diǎn) 的軌跡為 .
(1)求曲線 的方程;
(2)對(duì)于定點(diǎn) ,作過(guò)點(diǎn) 的直線 與曲線 交于不同的兩點(diǎn) , ,求△ 的內(nèi)切圓半徑的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的方程為x2+y2﹣6x=0,過(guò)點(diǎn)(1,2)的該圓的三條弦的長(zhǎng)a1 , a2 , a3構(gòu)成等差數(shù)列,則數(shù)列a1 , a2 , a3的公差的最大值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)若y=f(x)在(0,+∞)恒單調(diào)遞減,求a的取值范圍;
(2)若函數(shù)y=f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),求a的取值范圍并證明x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C: =1經(jīng)過(guò)點(diǎn)(2,3),兩條漸近線的夾角為60°,直線l交雙曲線于A,B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若l過(guò)原點(diǎn),P為雙曲線上異于A,B的一點(diǎn),且直線PA,PB的斜率kPA , kPB均存在,求證:kPAkPB為定值;
(3)若l過(guò)雙曲線的右焦點(diǎn)F1 , 是否存在x軸上的點(diǎn)M(m,0),使得直線l繞點(diǎn)F1無(wú)論怎樣轉(zhuǎn)動(dòng),都有 =0成立?若存在,求出M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax(a>0).
(1)當(dāng)a=2時(shí),解關(guān)于x的不等式﹣3<f(x)<5;
(2)對(duì)于給定的正數(shù)a,有一個(gè)最大的正數(shù)M(a),使得在整個(gè)區(qū)間[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;
(3)函數(shù)y=f(x)在[t,t+2]的最大值為0,最小值是﹣4,求實(shí)數(shù)a和t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做格點(diǎn).若函數(shù)y=f(x)的圖象恰好經(jīng)過(guò)k個(gè)格點(diǎn),則稱(chēng)函數(shù)y=f(x)為k階格點(diǎn)函數(shù).已知函數(shù):①y=x2;②y=2sinx,③y=πx﹣1;④y=cos(x+ ).其中為一階格點(diǎn)函數(shù)的序號(hào)為(注:把你認(rèn)為正確論斷的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=(2x2﹣ax﹣6a2)ln(x﹣a)的值域是[0,+∞),則實(shí)數(shù)a=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com