20.已知平面向量$\overrightarrow{a}$=(k,3),$\overrightarrow$=(1,4),若$\overrightarrow{a}$⊥$\overrightarrow$,則實數(shù)k=-12.

分析 由$\overrightarrow{a}$⊥$\overrightarrow$,可得$\overrightarrow{a}$•$\overrightarrow$=k+12=0,解出即可得出.

解答 解:∵$\overrightarrow{a}$⊥$\overrightarrow$,∴$\overrightarrow{a}$•$\overrightarrow$=k+12=0,解得k=-12.
故答案為:-12.

點評 本題考查了向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點分別為F1,F(xiàn)2,左右頂點分別為A1,A2,P為橢圓上任意一點(不包括橢圓的頂點),則以線段PFi(i=1,2)為直徑的圓與以A1A2為直徑的圓的位置關(guān)系為內(nèi)切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:
質(zhì)量指標(biāo)值mm<185185≤m<205m≥205
等級三等品二等品一等品
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(Ⅰ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(Ⅱ)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(III)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140}),則“質(zhì)量提升月”活動后的質(zhì)量指標(biāo)值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,在△ABC中,D是BC的中點,E,F(xiàn) 是AD 上的兩個三等分點.$\overrightarrow{BE}•\overrightarrow{CE}=2$,BC=2,則$\overrightarrow{BF}•\overrightarrow{CF}$=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率是$\frac{{\sqrt{3}}}{2}$,
拋物線E:x2=4y的焦點F是C的一個頂點.
(1)求橢圓C的方程;
(2)設(shè)與坐標(biāo)軸不重合的動直線l與C交于不同的兩點A和B,與x軸交于點M,且$P(\frac{1}{2},2)$滿足kPA+kPB=2kPM,試判斷點M是否為定點?若是定點求出點M的坐標(biāo);若不是定點請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=\frac{1}{2}{x^2}-({a-1})x-alnx$.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若f(x)=b有兩個不相等的實數(shù)根x1,x2,求證$f'({\frac{{{x_1}+{x_2}}}{2}})>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x∈R,則“x<1”是“x2<1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.從裝有紅球,白球,和黑球各2個的口袋內(nèi)一次取出2個球,則與事件“兩球都是白球”互斥而非對立的事件是以下事件中的①②.
①兩球都不是白球;          
②兩球恰有一白球;
③兩球至少有一個白球;      
④兩球至多一個白球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=sin(ωx+$\frac{π}{6}$)+ω (ω>0)的部分圖象如圖所示,則下列選項判斷錯誤的是( 。
A.f($\frac{π}{3}$-x)=f($\frac{π}{3}$+x)B.f(x)+f(-x-$\frac{π}{3}$)=1C.f($\frac{7π}{3}$)=2D.|MN|=π

查看答案和解析>>

同步練習(xí)冊答案