分析 首先由由f(x-1)的圖象關于(1,0)中心對稱知f(x)的圖象關于(0,0)中心對稱,根據奇函數(shù)定義與減函數(shù)性質得出s與t的關系式,然后利用線性規(guī)劃的知識即可求得結果.
解答 解:把函數(shù)y=f(x)向右平移1個單位可得函數(shù)y=f(x-1)的圖象
∵函數(shù)y=f(x-1)得圖象關于(1,0)成中心對稱
∴函數(shù)y=f(x)的圖象關于(0,0)成中心對稱,即函數(shù)y=f(x)為奇函數(shù)
∵f(s2-2s)≤-f(2t-t2)=f(t2-2t)且函數(shù)y=f(x)在R上單調遞減
∴s2-2s≥t2-2t在s∈[1,4]上恒成立
即(t-s)(s+t-2)≤0
∵1≤s≤4
∴-2≤2-s≤1,即2-s≤s
∴2-s≤t≤s
作出不等式所表示的平面區(qū)域,如圖的陰影部分的△ABC,C(4,-2),A(1,1),B(4,4).
∴s-2t在B(4,4)處取得最小值-4.
故答案為:-4.
點評 本題綜合考查函數(shù)的奇偶性、單調性知識,同時考查由最大值、最小值求取值范圍的策略,以及運算能力,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4π | B. | 16π | C. | $\frac{16π}{3}$ | D. | $\frac{32π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 480 | B. | 960 | C. | 720 | D. | 180 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com