(本小題滿(mǎn)分12分)
如圖,已知所在的平面,AB是⊙的直徑,,是⊙上一點(diǎn),且,分別為中點(diǎn)。

(1)求證:平面;
(2)求證:;
(3)求三棱錐-的體積。
(1)借助于三角形的中位線(xiàn)來(lái)分析得到,然后結(jié)合線(xiàn)面的判定定理得到結(jié)論。
(2)根據(jù)已知中,又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004936199556.png" style="vertical-align:middle;" />,那么可知,進(jìn)而結(jié)合性質(zhì)定理得到結(jié)論。
(3)1

試題分析:證明:(1)在中,分別為中點(diǎn),,
,
(2),,,是⊙的直徑,
,又。
,
(3)在中,的面積,

點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于空間中的線(xiàn)面平行和線(xiàn)面垂直的判定定理和性質(zhì)定理的靈活運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,邊長(zhǎng)為4的正方形與正三角形所在的平面相互垂直,且、
分別為、中點(diǎn).

(1)求證: ;
(2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿(mǎn)分13分)
如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.

(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題13分)如圖1,在三棱錐PABC中,平面ABC,,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示。

(1)證明:平面PBC;
(2)求三棱錐DABC的體積;
(3)在的平分線(xiàn)上確定一點(diǎn)Q,使得平面ABD,并求此時(shí)PQ的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知經(jīng)過(guò)同一點(diǎn)的N個(gè)平面,任意三個(gè)平面不經(jīng)過(guò)同一條直線(xiàn).若這個(gè)平面將空間分成個(gè)部分,則          ,              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直二面角α? ι?β,點(diǎn)A∈α,AC⊥ι,C為垂足,B∈β,BD⊥ι,D為垂足.若AB=2,AC=BD=1,則D到平面ABC的距離等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點(diǎn),F(xiàn)在棱AC上,且

(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF;
(3)若MBD的中點(diǎn),問(wèn)AC上是否存在一點(diǎn)N,使MN∥平面DEF?若存在,說(shuō)明點(diǎn)N的位置;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線(xiàn)l與球O有且只有一個(gè)公共點(diǎn)P,從直線(xiàn)l出發(fā)的兩個(gè)半平面截球O的兩個(gè)截面圓的半徑分別為1和.若二面角的平面角為150°,則球O的表面積為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
在四棱錐中,//, ,平面,.

(Ⅰ)設(shè)平面平面,求證://;
(Ⅱ)求證:平面
(Ⅲ)設(shè)點(diǎn)為線(xiàn)段上一點(diǎn),且直線(xiàn)與平面所成角的正弦值為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案