已知向量,且
;
的最小值是,求實(shí)數(shù)的值;
設(shè),若方程內(nèi)有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
(1);(2);(3)

試題分析:(1)根據(jù)已知條件及平面向量的坐標(biāo)表示與模的坐標(biāo)表示,
可以得到;
由(1)可得,原問題等價(jià)為求使的最小值為的值,這是一個(gè)二次函數(shù)與三角函數(shù)的復(fù)合函數(shù),需分別討論以下三種情況:①,②,③取得最小值的情況,從而可以得到;(3)當(dāng)時(shí),根據(jù)正弦函數(shù)上取值的對(duì)稱性,設(shè),要保證題中方程有兩個(gè)不同的解,必須保證方程,在僅有一根或有兩個(gè)相等根,由一元二次方程根的分布,可得
(1)∵,


, ∴ ∴      4分
(2)由(1)得,即
, ∴
①當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí),取得最小值,這與已知矛盾.
②當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí),取最小值
由已知得,解得
③當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí),取得最小值
由已知得,解得,這與相矛盾.
綜上所述,為所求.          9分;
根據(jù)正弦函數(shù)上取值的對(duì)稱性,因此設(shè)問題等價(jià)于方程,在僅有一根或有兩個(gè)相等根,∴
綜上,的取值范圍是:      14分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示是函數(shù)的部分圖像,則的解析式為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)(2011•廣東)已知函數(shù)f(x)=2sin(x﹣),x∈R.
(1)求f(0)的值;
(2)設(shè)α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)f (x)的最小正周期;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其圖象向右平移個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(  )
A.關(guān)于點(diǎn)(,0)對(duì)稱B.關(guān)于直線x=對(duì)稱
C.關(guān)于點(diǎn)(,0)對(duì)稱D.關(guān)于直線x=對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)++(為常數(shù))
(1)求函數(shù)的最小正周期;
(2)若函數(shù)上的最大值與最小值之和為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為了得到函數(shù)的圖象,只需將函數(shù)的圖象上各點(diǎn)(   )
A.向左平移個(gè)長(zhǎng)度單位B.向右平移個(gè)長(zhǎng)度單位
C.向左平移個(gè)長(zhǎng)度單位D.向右平移個(gè)長(zhǎng)度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),點(diǎn)A、B分別是函數(shù)圖像上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)設(shè)點(diǎn)A、B分別在角、的終邊上,求tan()的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域是        .

查看答案和解析>>

同步練習(xí)冊(cè)答案