8.下列計算S的值的選項(xiàng)中,不能設(shè)計算法求解的是( 。
A.S=1+2+3+…+10000000B.S=1+2+3+4
C.S=1+2+3+…+n(n≥2且n∈N)D.S=12+22+32+…+1002

分析 依據(jù)算法的定義,算法應(yīng)具有有窮性,即通過有限的步驟完成計算,求數(shù)列的前n項(xiàng)和公式不能通過算法得到,由此得解.

解答 解:算法可以理解為按照要求設(shè)計好的有限的確切的計算序列,并且這樣的步驟和序列可以解決一類問題.
它的一個特點(diǎn)為有窮性,是指算法必須能在執(zhí)行有限個步驟之后終止,
因?yàn)镾=1+2+3+…+n(n≥2且n∈N)為求數(shù)列的前n項(xiàng)和,不能通過有限的步驟完成.
故選:C.

點(diǎn)評 本題考查了算法的定義和算法的特點(diǎn),數(shù)列求和的算法設(shè)計,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期是π,那么f(π)=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知n∈N*,k∈N*,k≤n.求證:
(1)(k+1)C${\;}_{n+1}^{k+1}$=(n+1)C${\;}_{n}^{k}$;
(2)C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{{2}^{n+1}-1}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求直線l1:$\left\{\begin{array}{l}{x=1+3t}\\{y=2-4t}\end{array}\right.$(t為參數(shù))與直線l2:2x-4y=5的交點(diǎn)B的坐標(biāo),及點(diǎn)B與A(1,2)的距離..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的邊AB在直角坐標(biāo)平面的x軸上,AB的中點(diǎn)為坐標(biāo)原點(diǎn),若$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|}$=$\frac{1}{2}$,$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}|}$=$\frac{3}{2}$,又E點(diǎn)在BC邊上,且滿足3$\overrightarrow{BE}$=2$\overrightarrow{EC}$,以A、B為焦點(diǎn)的雙曲線經(jīng)過C、E兩點(diǎn).
(I)求|$\overrightarrow{AB}$|及此雙曲線的方程;
(II)若圓心為T(x0,0)的圓與雙曲線右支在第一象限交于不同兩點(diǎn)M,N,求T點(diǎn)橫坐標(biāo)x0取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.總體由編號為01,02,…,39,40的40個個體組成.利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表第1行的第6列和第7列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為( 。
50 44 66 44 21  66 06 58 05 62  61 65 54 35 02  42 35 48 96 32  14 52 41 52 48
22 66 22 15 86  26 63 75 41 99  58 42 36 72 24  58 37 52 18 51  03 37 18 39 11
A.23B.21C.35D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出一個如圖所示的程序框圖,若要使輸出的y值是輸入的x值的2倍,則這樣的x值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線的一條漸近線為y=2x,且經(jīng)過拋物線y2=4x的焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為${x^2}-\frac{y^2}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.2100被9除的余數(shù)為7.

查看答案和解析>>

同步練習(xí)冊答案