A. | 在區(qū)間[-$\frac{π}{4}$,$\frac{3π}{4}$]上單調(diào)遞減 | B. | 在區(qū)間[-$\frac{π}{4}$,$\frac{3π}{4}$]上單調(diào)遞增 | ||
C. | 在區(qū)間[-$\frac{π}{8}$,$\frac{3π}{8}$]上單調(diào)遞減 | D. | 在區(qū)間[-$\frac{π}{8}$,$\frac{3π}{8}$]上單調(diào)遞增 |
分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得所得函數(shù)的圖象對應(yīng)的函數(shù)解析式,再根據(jù)正弦函數(shù)的單調(diào)性,得出結(jié)論.
解答 解:將函數(shù)y=sin(2x-$\frac{π}{4}$)的圖象向左平移$\frac{π}{2}$個單位長度,所得圖象對應(yīng)的函數(shù)為y=sin[2(x+$\frac{π}{2}$)-$\frac{π}{4}$]=-sin(2x-$\frac{π}{4}$),
在區(qū)間[-$\frac{π}{4}$,$\frac{3π}{4}$]上,2x-$\frac{π}{4}$∈[-$\frac{3π}{4}$,$\frac{5π}{4}$],函數(shù)y=-sin(2x-$\frac{π}{4}$) 沒有單調(diào)性,故排除A、B.
在區(qū)間[-$\frac{π}{8}$,$\frac{3π}{8}$]上,2x-$\frac{π}{4}$∈[-$\frac{π}{2}$,$\frac{π}{2}$],函數(shù)y=-sin(2x-$\frac{π}{4}$) 單調(diào)遞減,故排除D,
故選:C.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3} | B. | {2,4} | C. | {2,3,4} | D. | {3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 2π | C. | π | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com