已知函數(shù)f(x)=(a+1)lnx+ax2+1.
(1)當(dāng)a=-
1
3
時(shí),求f(x)的最大值;
(2)a≤-2時(shí),判斷函數(shù)f(x)的單調(diào)性;
(3)若a≤-2,證明對(duì)任意x1,x2∈(0,+∞),均有|f(x1)-f(x2)|≥4|x1-x2|.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)當(dāng)a=-
1
3
時(shí),求函數(shù)的導(dǎo)數(shù),利用最值和導(dǎo)數(shù)之間的關(guān)系,即可求f(x)的最大值;
(2)a≤-2時(shí),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)即可判斷函數(shù)f(x)的單調(diào)性;
(3)若a≤-2,根據(jù)函數(shù)f(x)的單調(diào)性,將不等式進(jìn)行等價(jià)轉(zhuǎn)化,即可證明不等式.
解答: 解:(1)f(x)=
2
3
lnx-
1
3
x2+1
f′(x)=
2
3x
-
2x
3
=
-2(x+1)(x+1)
3x

當(dāng)x∈(0,+∞)變化時(shí),f(x),f'(x)變化情況如下表:
x(0,1)1(1,+∞)
f(x)+0-
f'(x)單調(diào)遞增極大值單調(diào)遞減
∴當(dāng)x=1時(shí),f(x)取得極大值,也是最大值f(1)=
2
3

f(x)max=
2
3

(2)f′(x)=
a+1
x
+2ax

∵x>0,a+1<0,2a<0,
a+1
x
+2ax<0
恒成立f(x)在(0,+∞)是減函數(shù).
(3)∵f(x)在(0,+∞)單調(diào)減,∴不妨設(shè)x1>x2>0
則|f(x1)-f(x2)|≥4|x1-x2|?f(x2)-f(x1)≥4x1-4x2,
即f(x2)+4x2≥f(x1)+4x1
∴f(x)+4x在(0,+∞)單調(diào)減,
設(shè)g(x)=f(x)+4x=(a+1)lnx+ax2+4x+1(x>0),
g′(x)=
a+1
x
+2ax+4=
2ax2+4x+a+1
x
,
∵a≤-2,
∴△=16-4×2a×(a+1)=-8(a2+a-2)=-8(a+2)(a-1)≤0,
g′(x)=
a+1
x
+2ax+4=
2ax2+4x+a+1
x
≤0恒成立.
∴g(x)為減函數(shù),
∴|f(x1)-f(x2)|≥4|x1-x2|對(duì)?x∈(0,+∞)均成立.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的應(yīng)用,要求熟練掌握函數(shù)單調(diào)性,最值和導(dǎo)數(shù)之間的關(guān)系,綜合性較強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=2,nan+1=(n+1)an+2,n∈N+,則a11=(  )
A、36B、38C、40D、42

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在調(diào)查男女乘客是否暈機(jī)的情況中,已知男乘客暈機(jī)為20人,不會(huì)暈機(jī)的為10人,而女乘客暈機(jī)為10人,不會(huì)暈機(jī)的為20人,
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)試判斷是否暈機(jī)與性別有關(guān)?參考公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在各項(xiàng)均為正數(shù)的等比數(shù)列{bn}中,若b5b6=a4+a8,求log2b1+log2b2+…+log2b10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C的參數(shù)方程為
x=2+cos∂
y=3+sin∂
(∂為參數(shù)),直線l的極坐標(biāo)方程為ρsin(θ-
π
4
)=
2

(1)求圓與直線的直角坐標(biāo)方程;
(2)直線l與圓C交于A、B,與x軸交于P,求PA+PB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知單位向量
e1
e2
的夾角為60°,且
a
=2
e1
+
e2
b
=-3
a
+2
e2
,求
a
,
b
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在直角坐標(biāo)系xOy中,圓錐曲線C的參數(shù)方程為
x=4cosθ
y=4sinθ
(θ為參數(shù)),直線L的參數(shù)方程為
x=2+t
y=3+
3
t
(t為參數(shù))
(Ⅰ)寫(xiě)出直線L的一般方程和圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線L與圓相交于A,B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC中,PC⊥底面ABC,AB=BC,D、F分別為AC、PC的中點(diǎn),DE⊥AP于E.
(1)求證:AP⊥平面BDE;
(2)求證:平面BDE⊥平面BDF;
(3)若AE:EP=1:2,求截面BEF分三棱錐P-ABC所成上、下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與4的等差中項(xiàng),數(shù)列{bn}中,b1=1,點(diǎn)p(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式an和bn;
(2)設(shè)cn=an•bn,求證:數(shù)列{cn}的前n項(xiàng)和Tn≥4.

查看答案和解析>>

同步練習(xí)冊(cè)答案