【題目】寫出解方程x2-2x-3=0的一個算法.
【答案】見解析
【解析】試題分析:本題設(shè)計一個求一元二次方程的根的算法,第一步要用賦值語句計算一元二次方程的根的判別式,第二步判斷判別式的符號決定根的判別式的符號;判斷語句判別式若小于0,輸出無實(shí)根,否則轉(zhuǎn)入下一步,賦值語句輸出方程的根;當(dāng)然算法設(shè)計方法不是一種,不同思路方法不同.
試題解析:
算法一:第一步,移項(xiàng),得x2-2x=3. ①
第二步,①式兩邊同時加1并配方,得(x-1)2=4. ②
第三步,②式兩邊開方,得x-1=±2. ③
第四步,解③得x=3或x=-1.
算法二:第一步,計算方程的判別式并判斷其符號:Δ=(-2)2-4×(-3)=16>0.
第二步,將a=1,b=-2,c =-3代入求根公式x=,得x1=3,x2=-1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)用定義證明:函數(shù)在區(qū)間上是減函數(shù);
(2)若函數(shù)是偶函數(shù),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).( )
(I)試確定函數(shù)的零點(diǎn)個數(shù);
(II)設(shè)是函數(shù)的兩個零點(diǎn),當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項(xiàng)參賽作品,只評一項(xiàng)一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,兩項(xiàng)作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是:先從這批產(chǎn)品中任取4件作檢驗(yàn),這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n=3,再從這批產(chǎn)品中任取4件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);如果n=4,再從這批產(chǎn)品中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過檢驗(yàn).
假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.
(1)求這批產(chǎn)品通過檢驗(yàn)的概率;
(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)用為100元,凡抽取的每件產(chǎn)品都需要檢驗(yàn),對這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為X(單位:元),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)對一切的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示2×2方格,在每一個方格中填入一個數(shù)字,數(shù)字可以是1、2、3、4中的任何一個,允許重復(fù).若填入A方格的數(shù)字大于B方格的數(shù)字,則不同的填法共有( )
A. 192種 B. 128種 C. 96種 D. 12種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,與直角坐標(biāo)系取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)化曲線的方程為普通方程,并說明它們分別表示什么曲線;
(2)設(shè)曲線與軸的一個交點(diǎn)的坐標(biāo)為,經(jīng)過點(diǎn)作斜率為1的直線, 交曲線于兩點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)國務(wù)院批復(fù)同意,重慶成功入圍國家中心城市,某校學(xué)生社團(tuán)針對“重慶的發(fā)展環(huán)境”對20名學(xué)生進(jìn)行問卷調(diào)查打分(滿分100分),得到如圖所示莖葉圖:
(Ⅰ)計算女生打分的平均分,并用莖葉圖的數(shù)字特征評價男生、女生打分誰更分散;
(Ⅱ)如圖按照打分區(qū)間、、、、繪制的直方圖中,求最高矩形的高;
(Ⅲ)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com