11.下列說法正確的是( 。
A.命題“若sinx=siny,則x=y”的逆否命題為真命題
B.“x=-1”是“x2-5x-6=0“的必要不充分條件
C.命題“?x∈R,x2-5x-6=0”的否定是“?x∈R,x2-5x-6=0”
D.命題“若x2=1,則x=1”的否命題為“若x2≠1,則x≠1”

分析 舉例說明A錯(cuò)誤;由充分必要條件的判斷方法判斷B;直接寫出命題的否定判斷C;寫出命題的否命題判斷D.

解答 解:sin$\frac{π}{6}$=sin$\frac{5π}{6}$,但$\frac{π}{6}≠\frac{5π}{6}$,∴“若sinx=siny,則x=y”是假命題,其逆否命題為假命題,故A錯(cuò)誤;
若x=-1,則x2-5x-6=0,反之,若x2-5x-6=0,則x=-1或x=6,∴“x=-1”是“x2-5x-6=0“的充分不必要條件,故B錯(cuò)誤;
命題“?x∈R,x2-5x-6=0”的否定是“?x∈R,x2-5x-6≠0”,故C錯(cuò)誤;
命題“若x2=1,則x=1”的否命題為“若x2≠1,則x≠1”,故D正確.
故選:D.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了命題的逆命題、否命題和逆否命題,訓(xùn)練了充分必要條件的判定方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)y=6cosx的圖象與y=9tanx的圖象的交點(diǎn)為P,過點(diǎn)P作PP1⊥x軸于點(diǎn)P1,直線PP1與y=sinx的圖象交于點(diǎn)P2,則線段P1P2的長(zhǎng)為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx+ax2,其中a為實(shí)常數(shù).
(1)討論函數(shù)f(x)的極值點(diǎn)個(gè)數(shù);
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.方程x2sinθ-y2cosθ=1(0<θ<π)表示焦點(diǎn)在y軸上的橢圓,則θ的取值范圍是($\frac{π}{2},\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=ex與函數(shù)y=lnx的圖象關(guān)于直線y=x對(duì)稱,請(qǐng)根據(jù)這一結(jié)論求:$\int_1^2$lnxdx=2ln2-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2sinxcos(x+$\frac{π}{3}$)+$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求函數(shù)f(x)的最大值與最小值及相應(yīng)的x的集合;
(2)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中錯(cuò)誤的是( 。
A.若m∥n,n⊥β,m?α,則α⊥βB.若α⊥γ,β⊥γ,α∩β=l,則l⊥γ
C.若α⊥β,a?α,則a⊥βD.若α⊥β,a∩β=AB,a∥α,a⊥AB,則a⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在極坐標(biāo)系中,點(diǎn)$(2,\frac{5π}{6})$到直線$ρsin(θ-\frac{π}{3})=4$的距離為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=exsinx,其中x∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).當(dāng)x∈(0,$\frac{π}{2}$]時(shí),直線y=kx在函數(shù)y=f(x)的圖象的下方,則實(shí)數(shù)k的取值范圍(-∞,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案