【題目】下列各組函數(shù)中,表示同一函數(shù)的是( )
A.
B.y=|1﹣x|和
C. 和y=x+1
D.y=x0和y=1

【答案】B
【解析】解:對于A,y= =|x|(x∈R),與y= =x(x∈R)的解析式不同,不是同一函數(shù);

對于B,y=|1﹣x|的定義域為R,與y= =|x﹣1|的定義域相同,對應(yīng)關(guān)系也相同,是同一函數(shù);

對于C,y= =x+1(x≠1),與y=x+1(x∈R)的定義域不同,不是同一函數(shù);

對于D,y=x0=1(x≠0),與y=1(x∈R)的定義域不同,不是同一函數(shù).

故選:B.

【考點(diǎn)精析】本題主要考查了判斷兩個函數(shù)是否為同一函數(shù)的相關(guān)知識點(diǎn),需要掌握只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求證f(x)是R上的單調(diào)增函數(shù);
(2)求函數(shù)f(x)的值域;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx﹣3在x=1處取得極值,且在(0,﹣3)點(diǎn)處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=xf(x)+4x的單調(diào)遞增區(qū)間及極值.
(3)求函數(shù)g(x)=xf(x)+4x在x∈[0,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax2+x(a∈R).
(1)若函數(shù)f(x)在x=1處的切線平行于x軸,求實數(shù)a的值,并求此時函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= +bx(其中a,b為常數(shù))的圖象經(jīng)過(1,3)、(2,3)兩點(diǎn).
(I)求a,b的值,判斷并證明函數(shù)f(x)的奇偶性;
(II)證明:函數(shù)f(x)在區(qū)間[ ,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0}.若A∪B=A,A∩C=C,求實數(shù)a,m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,離心率
(1)求橢圓C的方程;
(2)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A,B兩點(diǎn).試求k為何值時,三角形OAB是以O(shè)為直角頂點(diǎn)的直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關(guān)于x的不等式cx2+bx+a>0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的是(
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充分必要條件
C.命題“若x2﹣3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2﹣3x+2≠0”
D.命題p:?x∈R,使得x2+x﹣1<0,則¬p:?x∈R,使得x2+x﹣1≥0

查看答案和解析>>

同步練習(xí)冊答案