已知向量a=3e1-2e2,b=4e1+e2,其中e1=(1,0),e2=(0,1),求:
(1)a·b,|a+b|;(2)a與b的夾角的余弦值.
(1)10,;(2).
解析試題分析:先根據(jù)向量是互相垂直的單位向量表示出向量要用的兩個(gè)向量,然后根據(jù)向量的數(shù)量積運(yùn)算和向量模的運(yùn)算求出答案.(2)先求出向量的模長(zhǎng),然后根據(jù)cosθ的表示式將數(shù)值代入即可得到答案.本題主要考查向量的模、平面向量的坐標(biāo)運(yùn)算、數(shù)量積運(yùn)算,本題解題的關(guān)鍵是根據(jù)所給的兩個(gè)單位向量,寫(xiě)出要用的向量的坐標(biāo).
(1)a=3(1,0)-2(0,1)=(3,-2),b=4(1,0)+(0,1)=(4,1),a·b=3×4+(-2)×1=10,
∵|a+b|2=(a+b)2=a2+2a·b+b2=|a|2+20+|b|2=13+20+17=50,∴|a+b|=5
(2)cos〈a,b〉===.
考點(diǎn):平面向量數(shù)量積的坐標(biāo)表示、模、夾角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線:的焦點(diǎn)為,若過(guò)點(diǎn)且斜率為的直線與拋物線相交于兩點(diǎn),且.
(1)求拋物線的方程;
(2)設(shè)直線為拋物線的切線,且∥,為上一點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com