13.設(shè)函數(shù)f(x)=$\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,[x]表示不超過x的最大整數(shù),則函數(shù)y=[f(x)]的值域?yàn)椋ā 。?table class="qanwser">A.{0}B.{-1,0}C.{-1,0,1}D.{-2,0}

分析 將函數(shù)f(x)分離常數(shù)化簡(jiǎn),對(duì)x分段討論,可得函數(shù)y=[f(x)]的值域.

解答 解:函數(shù)f(x)=$\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$=$\frac{{2}^{x}+1}{1+{2}^{x}}-\frac{1}{1+{2}^{x}}-\frac{1}{2}$=$\frac{1}{2}$-$\frac{1}{1+{2}^{x}}$.
當(dāng)x>0,0≤f(x)<$\frac{1}{2}$[f(x)]=0;
當(dāng)x<0,$-\frac{1}{2}$<f(x)<0[f(x)]=-1;
當(dāng)x=0,f(x)=0[f(x)]=0;
∴當(dāng)x=0,y=[f(x)]+[f(-x)]=0;
當(dāng)x不等于0,y=[f(x)]+[f(-x)]=0-1=-1;
所以,y的值域:{0,-1}
故選:B.

點(diǎn)評(píng) 本題考查了對(duì)函數(shù)的化簡(jiǎn)變形能力和對(duì)[x]表示不超過x的最大整數(shù)的理解.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=x2-ax+1(a為常數(shù)),
(1)若f(x)的圖象與x軸有唯一的交點(diǎn),求a的值;
(2)若f(x)在區(qū)間[a-1,a+1]為單調(diào)函數(shù),求a的取值范圍;
(3)求f(x)在區(qū)間[0,2]內(nèi)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.①學(xué)校為了了解高一學(xué)生情況,從高一400名學(xué)生中抽取20人進(jìn)行座談;②一次數(shù)學(xué)競(jìng)賽中,某班有10人在110分以上,40人在90~100分,12人低于90分.現(xiàn)在從中抽取12人了解有關(guān)情況;③運(yùn)動(dòng)會(huì)服務(wù)人員為參加400m決賽的6名同學(xué)安排跑道.就這三件事,合適的抽樣方法為( 。
A.分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣
B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣
C.分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣
D.系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.對(duì)任意實(shí)數(shù)λ,直線l1:x+λy-m-λn=0與圓C:x2+y2=r2總相交于兩不同點(diǎn),則直線l2:mx+ny=r2與圓C的位置關(guān)系是( 。
A.相離B.相交C.相切D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若2x-3<m的充分不必要條件是x(x-3)<0,則實(shí)數(shù)m的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)k∈R,動(dòng)直線l1:kx-y+k=0過定點(diǎn)A,動(dòng)直線l2:x+ky-5-8k=0過定點(diǎn)B,并且l1與l2相交于點(diǎn)P,則|PA|+|PB|的最大值為( 。
A.$10\sqrt{2}$B.$5\sqrt{2}$C.$10\sqrt{5}$D.$5\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù) y=$\frac{x-m}{x-1}$在區(qū)間 (1,+∞)內(nèi)是減函數(shù),則實(shí)數(shù)m的取值范圍是m<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的焦點(diǎn)坐標(biāo)為(±4,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函數(shù).
(Ⅰ)求a、b的值;
(Ⅱ)解關(guān)于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案