20.已知f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)的一條對(duì)稱軸為y軸,且θ∈(0,π).求θ=$\frac{π}{6}$.

分析 利用輔助角將函數(shù)化為y=Asin(ωx+φ)的形式,根據(jù)一條對(duì)稱軸為y軸求解即可.

解答 解:由題意:f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)
化簡得:f(x)=2sin(x+θ$+\frac{π}{3}$)
∵一條對(duì)稱軸為y軸:
∴θ$+\frac{π}{3}$=$kπ+\frac{π}{2}$,(k∈Z)
解得:$θ=kπ+\frac{π}{6}$,
∵θ∈(0,π),
當(dāng)k=0時(shí),θ=$\frac{π}{6}$.
故答案為:$\frac{π}{6}$.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),利用輔助角公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.排一張有5個(gè)歌唱節(jié)目和4個(gè)舞蹈節(jié)目的演出節(jié)目單,要求:
(1)任何兩個(gè)舞蹈節(jié)目不相鄰的排法有多少種?
(2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,a2=5,n≥2時(shí),an+1=5an-6an-1
(1)證明:數(shù)列{an+1-3an}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)試比較an與2n2+1的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在數(shù)1和e2之間插入n個(gè)實(shí)數(shù)x1,x2,x3,…,xn,使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這插入的n個(gè)數(shù)的乘積記作Tn,再令an=lnTn,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}•({a_n}+2)}}$,求數(shù)列{bn}的前n項(xiàng)和Sn
(3)若對(duì)任意n∈N*,都有Sn$<\frac{m}{60}$成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知關(guān)于x的函數(shù)y=loga(2-ax)在[1,2]上是增函數(shù),則a的取值范圍是( 。
A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn,且存在正數(shù)t,使得對(duì)所有的正整數(shù)n,都有$\sqrt{t{S_n}}=\frac{{t+{a_n}}}{2}$,則Sn=tn2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.請(qǐng)認(rèn)真閱讀程序框圖,然后回答問題,其中n0∈N.
(1)若輸入n0=0,寫出所輸出的結(jié)果;
(2)若輸出的結(jié)果中,只有三個(gè)自然數(shù),求輸入的自然數(shù)n0的所有可能的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在正四棱錐S-ABCD中,SO⊥平面ABCD于O,SO=2,底面邊長為$\sqrt{2}$,點(diǎn)P,Q分別在線段BD,SC上移動(dòng),則PQ兩點(diǎn)的最短距離為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知正項(xiàng)等比數(shù)列{an}滿足:a6+2a5=15a4,若存在兩項(xiàng)am,an使得$\sqrt{{a_m}{a_n}}=3{a_1},則-m+\frac{12}{n}$的最小值為( 。
A.4B.3C.$4\sqrt{3}-4$D.$4-2\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案