【題目】設(shè)函數(shù)f(x)=aex+ +b(a>0).
(Ⅰ)求f(x)在[0,+∞)內(nèi)的最小值;
(Ⅱ)設(shè)曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程為y= ,求a,b的值.

【答案】解:(Ⅰ)設(shè)t=ex(t≥1),則

①當(dāng)a≥1時(shí),y′≥0,∴ 在t≥1上是增函數(shù),
∴當(dāng)t=1(x=0)時(shí),f(x)的最小值為
②當(dāng)0<a<1時(shí), ,當(dāng)且僅當(dāng)at=1(x=﹣lna)時(shí),f(x)的最小值為b+2;
(Ⅱ)求導(dǎo)函數(shù),可得)
∵曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程為y= ,
,即 ,解得
【解析】(Ⅰ)設(shè)t=ex(t≥1),則 ,求出導(dǎo)函數(shù) ,再進(jìn)行分類(lèi)討論:①當(dāng)a≥1時(shí),y′>0, 在t≥1上是增函數(shù);②當(dāng)0<a<1時(shí),利用基本不等式 ,當(dāng)且僅當(dāng)at=1(x=﹣lna)時(shí),f(x)取得最小值;(Ⅱ)求導(dǎo)函數(shù),利用曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程為y= ,建立方程組,即可求得a,b的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若樣本的平均數(shù)是,方差是,則對(duì)樣本,下列結(jié)論正確的是 ( )

A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25

C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若對(duì)于定義域內(nèi)的任意x1 , 總存在x2使得f(x2)<f(x1),則滿(mǎn)足條件的實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△中,已知,直線(xiàn)經(jīng)過(guò)點(diǎn)

(Ⅰ)若直線(xiàn):與線(xiàn)段交于點(diǎn),且為△的外心,求△的外接圓的方程;

(Ⅱ)若直線(xiàn)方程為,且△的面積為,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,則下列命題正確的是(寫(xiě)出所有正確命題的編號(hào)).
①若ab>c2 , 則C<
②若a+b>2c,則C<
③若a3+b3=c3 , 則C<
④若(a+b)c≤2ab,則C>
⑤若(a2+b2)c2≤2a2b2 , 則C>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐P﹣ABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長(zhǎng)為1的正三角形,PC為球O的直徑,該三棱錐的體積為 , 則球O的表面積為( 。
A.4π
B.8π
C.12π
D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F1是橢圓5x2+9y2=45的左焦點(diǎn),P為橢圓上半部分任意一點(diǎn),A(1,1)為橢圓內(nèi)一點(diǎn),則|PA|+|PF1|的最小值_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) , 其中a∈R.若對(duì)任意的非零實(shí)數(shù)x1 , 存在唯一的非零實(shí)數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則k的取值范圍為( 。
A.k≤0
B.k≥8
C.0≤k≤8
D.k≤0或k≥8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊邊長(zhǎng)為1(百米)的正方形區(qū)域ABCD.在點(diǎn)A處有一個(gè)可轉(zhuǎn)動(dòng)的探照燈,其照射角∠PAQ始終為45°(其中點(diǎn)P,Q分別在邊BC,CD上),設(shè)BP=t.
(I)用t表示出PQ的長(zhǎng)度,并探求△CPQ的周長(zhǎng)l是否為定值;
(Ⅱ)設(shè)探照燈照射在正方形ABCD內(nèi)部區(qū)域的面積S(平方百米),求S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案