【題目】已知函數(shù),.

(1)若函數(shù)為偶函數(shù),求實(shí)數(shù)的值;

(2)若,且函數(shù)上是單調(diào)函數(shù),求實(shí)數(shù)的值;

(3)若,若當(dāng)時(shí),總有,使得,求實(shí)數(shù)的取值范圍.

【答案】(1);(2);(3).

【解析】

(1)直接利用偶函數(shù)的定義解得m;

(2)由最高點(diǎn)的坐標(biāo),求得,再利用單調(diào)性得,求得的值

(3)設(shè)函數(shù)的值域?yàn)?/span>的值域?yàn)?/span>,由題意和子集的定義,得,得到不等式恒成立,兩邊分別分離參數(shù)m,得到m的范圍.

解:(1)設(shè),則

由于是偶函數(shù),所以對(duì)任意成立.

恒成立.

恒成立,

所以 ,解得

所以所求實(shí)數(shù)的值是

(2)由,

,即

當(dāng)時(shí), ,

因?yàn)?/span>在區(qū)間的單調(diào)遞增,所以,再由題設(shè)得

所以

(3)設(shè)函數(shù)上的值域?yàn)?/span>,上的值域?yàn)?/span>,

由題意和子集的定義,得

當(dāng)時(shí),,

所以當(dāng)時(shí),不等式恒成立,

恒成立,得,

恒成立,得,

綜上,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列命題:①若,則;②若,則存在唯一實(shí)數(shù),使得;③若,則;④若,且的夾角為鈍角,則;⑤若平面內(nèi)定點(diǎn)滿(mǎn)足,則為正三角形.其中正確的命題序號(hào)為 ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))在同一半周期內(nèi)的圖象過(guò)點(diǎn), , ,其中為坐標(biāo)原點(diǎn), 為函數(shù)圖象的最高點(diǎn), 為函數(shù)的圖象與軸的正半軸的交點(diǎn), 為等腰直角三角形.

(1)求的值;

(2)將繞原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)角,得到,若點(diǎn)恰好落在曲線(xiàn))上(如圖所示),試判斷點(diǎn)是否也落在曲線(xiàn))上,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率為,直線(xiàn)與橢圓交于不同的兩點(diǎn),為橢圓的左頂點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)當(dāng)的面積為時(shí),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

1)當(dāng)時(shí),求函數(shù)的極小值;

2)討論函數(shù)零點(diǎn)的個(gè)數(shù);

3)若對(duì)任意的 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)為參數(shù))和曲線(xiàn):(為參數(shù)).

(1)化,的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);

(2)若上的點(diǎn)對(duì)應(yīng)的參數(shù)為,上的動(dòng)點(diǎn),求中點(diǎn)到直線(xiàn)為參數(shù))距離的最小值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(,且),且.

(1)求實(shí)數(shù)的值;

(2)判斷函數(shù)的奇偶性并證明

(3)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列五個(gè)命題不正確的是________.

①若等比數(shù)列的公比,則數(shù)列單調(diào)遞增.

②常數(shù)列既是等差數(shù)列又是等比數(shù)列.

③在中,角ABC所對(duì)的邊分別為a,b,c,若.

④在中,若,則為銳角三角形.

⑤等比數(shù)列的前n項(xiàng)和為,對(duì)任意正整數(shù)m,則,,,仍成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知函數(shù),其中,求函數(shù)的圖象恰好經(jīng)過(guò)第一、二、三象限的概率;

(2)某校早上8:10開(kāi)始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~8:00之間到校,且每人到該時(shí)間段內(nèi)到校時(shí)刻是等可能的,求兩人到校時(shí)刻相差10分鐘以上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案