精英家教網 > 高中數學 > 題目詳情
21、已知函數f(x)的導數f′(x)滿足0<f′(x)<1,常數α為方程f(x)=x的實數根.
(1)求證:當x>α時,總有x>f(x)成立;
(2)若函數f(x)的定義域為I,對任意[a,b]⊆I,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f′(x0)成立,求證:方程f(x)=x不存在異于α的實數根.
分析:(1)欲比較x與f(x)的大小,先構造函數h(x)=x-f(x),根據條件可知h(x)為增函數,求出h(x)在(α,+∞)上的最小值即可;
(2)用反證法進行證明,假設方程f(x)=x有異于α的實根β,由題意在α與β之間必存在一點c,α<c<β,使等式β-α=f(β)-f(α)=(β-α)f'(c)成立,而α≠β,所以必有f'(c)=1,但這與0<f'(x)<1矛盾,得到結論.
解答:解:(1)令h(x)=x-f(x),
∵h'(x)=1-f'(x)>0,
∴h(x)為增函數.
又∵h(α)=α-f(α)=0,
∴當x>α時,h(x)>0,即x>f(x).
(2)假設方程f(x)=x有異于α的實根β,即f(β)=β,
不妨設β>α,則β-α=f(β)-f(α),
由題意在α與β之間必存在一點c,α<c<β,
使等式β-α=f(β)-f(α)=(β-α)f'(c)成立,
因為α≠β,所以必有f'(c)=1,但這與0<f'(x)<1矛盾.
因此,方程f(x)=x不存在異于α的實數根.
點評:本題要求會利用導數研究函數的單調區(qū)間以及根據函數的增減性得到函數的最值,以及考查反證法的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

4、已知函數f(x)的導函數f′(x)=a(x+1)(x-a),若f(x)在x=a處取到極大值,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

14、已知函數f(x)的導函數f′(x)=2x-5,且f(0)的值為整數,當x∈(n,n+1](n∈N*)時,f(x)的值為整數的個數有且只有1個,則n=
2

查看答案和解析>>

科目:高中數學 來源: 題型:

18、已知函數f(x)的導數f″(x)滿足0<f′(x)<1,常數a為方程f(x)=x的實數根.
(Ⅰ)若函數f(x)的定義域為M,對任意[a,b]⊆M,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f″(x0)成立,求證:方程f(x)=x存在唯一的實數根a;
(Ⅱ) 求證:當x>a時,總有f(x)<x成立;
(Ⅲ)對任意x1、x2,若滿足|x1-a|<2,|x2-a|<2,求證:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的導函數為f'(x),且滿足f(x)=2xf'(1)+lnx,則f(1)的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的導函數f′(x)的圖象如圖所示,那么( 。

查看答案和解析>>

同步練習冊答案