下列命題中,真命題是( 。
A、命題“若p,則q”的否命題是“若p,則¬q”
B、a+b=0的充要條件是
a
b
=-1
C、已知命題p、q,若“p∨q”為假命題,則命題p與q一真一假
D、命題p:?x∈R,使得x2+1<0,則¬p:?x∈R,使得x2+1≥0
考點:特稱命題,命題的真假判斷與應用
專題:簡易邏輯
分析:A.利用否命題的意義即可得出;
B.a(chǎn)+b=0的充要條件應是
a
b
=-1
或a=b=0,即可判斷出;
C.利用“或命題”的意義可知:若“p∨q”為假命題,則命題p與q都是假命題;
D.利用“非命題”的意義即可判斷出.
解答: 解:A.命題“若p,則q”的否命題應是“若¬p,則¬q”,因此不正確;
B.a(chǎn)+b=0的充要條件是
a
b
=-1
或a=b=0,因此不正確;
C.命題p、q,若“p∨q”為假命題,則命題p與q都是假命題,因此不正確;
D.命題p:?x∈R,使得x2+1<0,則¬p:?x∈R,使得x2+1≥0,正確.
綜上可知:只有D是真命題.
故選:D.
點評:本題考查了簡易邏輯的有知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x、y均為正值,且滿足x+2y+xy=7,以x為自變量,試寫出關于x函數(shù)解析式,并求出定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖所表示的程序,則所得的結果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸入的N=2014,則輸出的S=( 。
A、2011B、2012
C、2013D、2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直線l:y=k(x+1)(k>0)與拋物線C:y2=4x相交于A、B兩點,且A、B兩點在拋物線C準線上的射影分別是M、N,若|AM|=2|BN|,則k的值是( 。
A、
1
3
B、
2
3
C、
2
3
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列4個命題:
(1)若a<b,則am2<bm2;(2)函數(shù)f(x)=
1
log
1
2
(2x+1)
的定義域為(-∞,0)(3)“a≤2”是“對任意的實數(shù)x,|x+1|+|x-1|≥a成立”的充要條件;(4)函數(shù)f(x)=
2x-1
2x+1
的值域為(-1,1).其中正確的命題個數(shù)是( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(x-1)10的展開式中第6項系的系數(shù)是( 。
A、-
C
5
10
B、
C
5
10
C、-
C
6
10
D、
C
6
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,設E為PC中點,點F在線段PD上且PF=2FD.
(Ⅰ)求證:BE∥平面ACF;
(Ⅱ)設二面角A-CF-D的大小為θ,若|cosθ|=
42
14
,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的兩個焦點是(0,-
3
)和(0,
3
),并且經(jīng)過點(
3
2
 ,  1)
,拋物線的頂點E在坐標原點,焦點恰好是橢圓C的右頂點F.
(Ⅰ)求橢圓C和拋物線E的標準方程;
(Ⅱ)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點G、H,求
AG
HB
的最小值.

查看答案和解析>>

同步練習冊答案