已知數(shù)列,滿足:
(1)若,求數(shù)列的通項公式;
(2)若,且
① 記,求證:數(shù)列為等差數(shù)列;
② 若數(shù)列中任意一項的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項應(yīng)滿足的條件.

(1)
(2)①根據(jù)等差數(shù)列的定義,證明相鄰兩項的差為定值來得到證明。從第二項起滿足題意即可。
②當,數(shù)列任意一項的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次

解析試題分析:解:(1)當時,有

也滿足上式,所以數(shù)列的通項公式是.    4分
(2)①因為對任意的,有,所以,
,
所以,數(shù)列為等差數(shù)列.                    8分
②設(shè)(其中為常數(shù)且,
所以,,
即數(shù)列均為以7為公差的等差數(shù)列.               10分
設(shè)
(其中中一個常數(shù))
時,對任意的,有;             12分
時,
(Ⅰ)若,則對任意的,所以數(shù)列為遞減數(shù)列;
(Ⅱ)若,則對任意的,所以數(shù)列為遞增數(shù)列.
綜上所述,集合
時,數(shù)列中必有某數(shù)重復(fù)出現(xiàn)無數(shù)次;
時,數(shù)列均為單調(diào)數(shù)列,任意一個數(shù)在這6個數(shù)列中最多出現(xiàn)一次,所以數(shù)列任意一項的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次.     18分
考點:數(shù)列的性質(zhì),數(shù)列的概念
點評:主要是考查了等差數(shù)列的概念和數(shù)列的單調(diào)性的運用,屬于難度題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,,,若數(shù)列滿足.
(Ⅰ)證明:數(shù)列是等差數(shù)列,并寫出的通項公式;
(Ⅱ)求數(shù)列的通項公式及數(shù)列中的最大項與最小項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點在函數(shù)圖象上,過點的切線的方向向量為>0).
(Ⅰ)求數(shù)列的通項公式,并將化簡;
(Ⅱ)設(shè)數(shù)列的前n項和為Sn,若≤Sn對任意正整數(shù)n均成立,求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是等差數(shù)列,公差,的前項和,已知.
(1)求數(shù)列的通項公式;
(2)令=,求數(shù)列的前項之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)滿足以下兩個條件的有窮數(shù)列階“期待數(shù)列”:
;②
(1)若等比數(shù)列 ()階“期待數(shù)列”,求公比;
(2)若一個等差數(shù)列既是 ()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記階“期待數(shù)列”的前項和為
(。┣笞C:;
(ⅱ)若存在使,試問數(shù)列能否為階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于無窮數(shù)列和函數(shù),若,則稱是數(shù)列的母函數(shù).
(Ⅰ)定義在上的函數(shù)滿足:對任意,都有,且;又數(shù)列滿足:.
求證:(1)是數(shù)列的母函數(shù);
(2)求數(shù)列的前項.
(Ⅱ)已知是數(shù)列的母函數(shù),且.若數(shù)列的前項和為,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列,a1=1,點在直線上.
(1)求數(shù)列的通項公式;
(2)設(shè),求證:<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{}滿足=1,=,(1)計算,,的值;(2)歸納推測,并用數(shù)學歸納法證明你的推測.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,,且.
(Ⅰ) 求,猜想的表達式,并加以證明;
(Ⅱ) 設(shè),求證:對任意的自然數(shù),都有;

查看答案和解析>>

同步練習冊答案