【題目】已知函數(shù)f(x)=x(lnxax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

【答案】B

【解析】函數(shù)fx=xlnx﹣ax),則f′x=lnx﹣ax+x﹣a=lnx﹣2ax+1,

f′x=lnx﹣2ax+1=0lnx=2ax﹣1,

函數(shù)fx=xlnx﹣ax)有兩個(gè)極值點(diǎn),等價(jià)于f′x=lnx﹣2ax+1有兩個(gè)零點(diǎn),

等價(jià)于函數(shù)y=lnxy=2ax﹣1的圖象有兩個(gè)交點(diǎn),

在同一個(gè)坐標(biāo)系中作出它們的圖象(如圖)

當(dāng)a=時(shí),直線y=2ax﹣1y=lnx的圖象相切,

由圖可知,當(dāng)0a時(shí),y=lnxy=2ax﹣1的圖象有兩個(gè)交點(diǎn).

則實(shí)數(shù)a的取值范圍是(0,).

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一條公路上,每隔100km有個(gè)倉庫(如圖),共有5個(gè)倉庫.一號倉庫存有10t貨物,二號倉庫存20t,五號倉庫存40t,其余兩個(gè)倉庫是空的.現(xiàn)在想把所有的貨物放在一個(gè)倉庫里,如果每噸貨物運(yùn)輸1km需要0.5元運(yùn)輸費(fèi),那么要多少才行?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),且在區(qū)間(0,+∞)上是單調(diào)遞增,若 ,△ABC的內(nèi)角滿足f(cosA)<0,則A的取值范圍是(
A.(
B.( ,π)

C.(0, )∪( ,π)
D.( , )∪( ,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域,值域分別為A,B,且A∩B是單元集,下列命題中:
①若A∩B={a},則f(a)=a;
②若B不是單元集,則滿足f[f(x)]=f(x)的x值可能不存在;
③若f(x)具有奇偶性,則f(x)可能為偶函數(shù);
④若f(x)不是常數(shù)函數(shù),則f(x)不可能為周期函數(shù).
正確命題的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點(diǎn)A(x , y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是 ,則當(dāng)0≤t≤12時(shí),動點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是(
A.[0,1]
B.[1,7]
C.[7,12]
D.[0,1]和[7,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= ,則該函數(shù)在(﹣∞,+∞)上是(
A.單調(diào)遞減無最小值
B.單調(diào)遞減有最小值
C.單調(diào)遞增無最大值
D.單調(diào)遞增有最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,組成一個(gè)樣本的抽樣方法;在《九章算術(shù)》第三章“衰分”中有如下問題:“今有甲持錢五百六十,乙持錢三百五十,丙持錢一百八十,凡三人俱出關(guān),關(guān)稅百錢.欲以錢多少衰出之,問各幾何?”其譯文為:今有甲持560錢,乙持350錢,丙持180錢,甲、乙、丙三人一起出關(guān),關(guān)稅共100錢,要按照各人帶錢多少的比例進(jìn)行交稅,問三人各應(yīng)付多少稅?則下列說法錯(cuò)誤的是( )

A. 甲應(yīng)付 B. 乙應(yīng)付

C. 丙應(yīng)付 D. 三者中甲付的錢最多,丙付的錢最少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某企業(yè)近3年的前7個(gè)月的月利潤(單位:百萬元)如下面的折線圖所示:

1)試問這3年的前7個(gè)月中哪個(gè)月的月平均利潤最高?

2)通過計(jì)算判斷這3年的前7個(gè)月的總利潤的發(fā)展趨勢;

3)試以第3年的前4個(gè)月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測第38月份的利潤.

月份x

1

2

3

4

利潤y(單位:百萬元)

4

4

6

6

相關(guān)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,正確的是( 。
A.2{x|x≤2}
B.3∈{x|x>2且x<1}
C.{x|x=4k±1,k∈Z}≠{x|x=2k+1,k∈Z}
D.{x|x=3k+1,k∈Z}={x|x=3k﹣2,k∈Z}

查看答案和解析>>

同步練習(xí)冊答案