【題目】已知橢圓右焦點為,右頂點為,點在橢圓上,且軸,直線軸于點,若;

(1)求橢圓的離心率;

(2)設(shè)經(jīng)過點且斜率為的直線與橢圓在軸上方的交點為,圓同時與軸和直線相切,圓心在直線上,且. 求橢圓的方程.

【答案】1;

2

【解析】

1)由題意可得,即,再由離心率公式可得所求值;

2)求得,可得橢圓方程為,設(shè)直線的方程為,聯(lián)立橢圓方程求得的坐標(biāo),以及直線的斜率,由兩條直線平行的條件和直線與圓相切的條件,解方程可得,即可得到所求橢圓方程.

1,所以

可得

2,,

,,

可得橢圓方程為,

設(shè)直線的方程為,

代入橢圓方程可得

解得,

代入直線方程可得(舍去),

可得,

圓心在直線上,且,可設(shè),

可得,解得,

即有,可得圓的半徑為2,

由直線和圓相切的條件為,

可得,解得

可得,

可得橢圓方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點分別為,點,點在線段的中垂線上.

1)求橢圓的方程;

2)設(shè)直線與橢圓交于兩點,直線的傾斜角分別為,且,求證:直線過定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一輛汽車從A市出發(fā)沿海岸一條筆直公路以的速度向東勻速行駛,汽車開動時,在A市南偏東方向距A500km且與海岸距離為300km的海上B處有一艘快艇與汽車同時出發(fā),要把一份文件交給這輛汽車的司機.

1)快艇至少以多大的速度行駛才能把文件送到司機手中?

2)求快艇以最小速度行駛時的行駛方向與所成角的大。

3)若快艇每小時最快行駛,快艇應(yīng)如何行駛才能盡快把文件交到司機手中?最快需多長時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于的方程只有一個實數(shù)解,求實數(shù)的取值范圍;

2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;

3)探究函數(shù)在區(qū)間上的最大值(直接寫出結(jié)果,不需給出演算步驟).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有8人

8

8

4

2

1

1

選考方案待確定的有6人

4

3

0

1

0

0

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

1

0

0

1

(Ⅰ)估計該學(xué)校高一年級選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

(Ⅲ)從選考方案確定的8名男生隨機選出2名,設(shè)隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項和為,已知,

,則下列結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是萬元,它們與投入資金 萬元的關(guān)系分別為,,(其中都為常數(shù)),函數(shù)對應(yīng)的曲線如圖所示.

1)求函數(shù)的解析式;

2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋時期著名的數(shù)學(xué)家秦九韶在其著作《數(shù)書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.若把以上這段文字寫成公式,即,其中a、b、c分別為內(nèi)角A、BC的對邊.,,則面積S的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一名高二學(xué)生盼望2020年進(jìn)入某名牌大學(xué)學(xué)習(xí),假設(shè)該名牌大學(xué)有以下條件之一均可錄。孩2020年2月通過考試進(jìn)入國家數(shù)學(xué)奧賽集訓(xùn)隊(集訓(xùn)隊從2019年10月省數(shù)學(xué)競賽一等獎中選拔):②2020年3月自主招生考試通過并且達(dá)到2020年6月高考重點分?jǐn)?shù)線,③2020年6月高考達(dá)到該校錄取分?jǐn)?shù)線(該校錄取分?jǐn)?shù)線高于重點線),該學(xué)生具備參加省數(shù)學(xué)競賽、自主招生和高考的資格且估計自己通過各種考試的概率如下表

省數(shù)學(xué)競賽一等獎

自主招生通過

高考達(dá)重點線

高考達(dá)該校分?jǐn)?shù)線

0.5

0.6

0.9

0.7

若該學(xué)生數(shù)學(xué)競賽獲省一等獎,則該學(xué)生估計進(jìn)入國家集訓(xùn)隊的概率是0.2.若進(jìn)入國家集訓(xùn)隊,則提前錄取,若未被錄取,則再按②、③順序依次錄。呵懊嬉呀(jīng)被錄取后,不得參加后面的考試或錄取.(注:自主招生考試通過且高考達(dá)重點線才能錄。

(Ⅰ)求該學(xué)生參加自主招生考試的概率;

(Ⅱ)求該學(xué)生參加考試的次數(shù)的分布列及數(shù)學(xué)期望;

(Ⅲ)求該學(xué)生被該校錄取的概率.

查看答案和解析>>

同步練習(xí)冊答案