14.如圖,在△ABC中,D、E分別是AB和BC的三等分點(diǎn),若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,則$\overrightarrow{DE}$=( 。
A.$\overrightarrow{DE}$=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$B.$\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\overrightarrow{DE}$=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$D.$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$

分析 根據(jù)平面向量的線性表示與運(yùn)算性質(zhì),利用$\overrightarrow{DB}$與$\overrightarrow{BE}$表示出$\overrightarrow{DE}$即可.

解答 解:△ABC中,D、E分別是AB和BC的三等分點(diǎn),
∴$\overrightarrow{DB}$=$\frac{2}{3}$$\overrightarrow{AB}$=$\frac{2}{3}$$\overrightarrow{a}$,
$\overrightarrow{BE}$=$\frac{1}{3}$$\overrightarrow{BC}$=$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{3}$($\overrightarrow$-$\overrightarrow{a}$),
∴$\overrightarrow{DE}$=$\overrightarrow{DB}$+$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$($\overrightarrow$-$\overrightarrow{a}$)=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$.
故選:A.

點(diǎn)評 本題考查了平面向量的線性表示與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展開式中,求含x3的項(xiàng)的系數(shù);
(2)若(2-x)6展開式中第二項(xiàng)小于第一項(xiàng),但不小于第三項(xiàng),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知奇函數(shù)f(x)在(-∞,0)上單調(diào)遞減,且f(2)=0,則不等式xf(x-1)>0的解集是( 。
A.(-3,-1)B.(-3,1)∪(2,+∞)C.(-3,0)∪(3,+∞)D.(-1,0)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)命題P:關(guān)于x的不等式${a^{{x^2}-ax-2{a^2}}}$>1(a>0且a≠1)的解集為{x|-a<x<2a};命題Q:f(x)=lg(ax2-x+a)的值域?yàn)镽.如果P且Q為真,則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在正方體ABCD-A1B1C1D1中,棱長為a,E為棱CC1上的動點(diǎn).
(1)求異面直線BD與A1E所成的角;
(2)確定E點(diǎn)的位置,使平面A1BD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(Ⅰ)已知數(shù)列{an}的前n項(xiàng)和Sn=3n2-2n,求證:數(shù)列{an}成等差數(shù)列;
(Ⅱ)設(shè){bn}是首項(xiàng)b1=3,公比為q的等比數(shù)列,且b1,b2,b3成等差數(shù)列,求{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$f(x)=\left\{{\begin{array}{l}{1-{x^2},x≤1}\\{lnx,x>1}\end{array}}\right.$,若方程f(x)=kx-$\frac{1}{2}$恰有四個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。
A.$(\frac{1}{2},\frac{1}{{\sqrt{e}}}$)B.(2,e)C.($\sqrt{e}$,2)D.$(\frac{1}{2},\sqrt{e}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.${∫}_{1}^{e}lnxdx$=( 。
A.$\frac{1}{e}$-1B.e-1C.1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋2顆骰子,則向上點(diǎn)數(shù)不同的概率為( 。
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案