A. | $\overrightarrow{DE}$=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$ | B. | $\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$ | C. | $\overrightarrow{DE}$=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$ | D. | $\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$ |
分析 根據(jù)平面向量的線性表示與運(yùn)算性質(zhì),利用$\overrightarrow{DB}$與$\overrightarrow{BE}$表示出$\overrightarrow{DE}$即可.
解答 解:△ABC中,D、E分別是AB和BC的三等分點(diǎn),
∴$\overrightarrow{DB}$=$\frac{2}{3}$$\overrightarrow{AB}$=$\frac{2}{3}$$\overrightarrow{a}$,
$\overrightarrow{BE}$=$\frac{1}{3}$$\overrightarrow{BC}$=$\frac{1}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{3}$($\overrightarrow$-$\overrightarrow{a}$),
∴$\overrightarrow{DE}$=$\overrightarrow{DB}$+$\overrightarrow{BE}$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$($\overrightarrow$-$\overrightarrow{a}$)=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$.
故選:A.
點(diǎn)評 本題考查了平面向量的線性表示與運(yùn)算問題,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-1) | B. | (-3,1)∪(2,+∞) | C. | (-3,0)∪(3,+∞) | D. | (-1,0)∪(1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{1}{2},\frac{1}{{\sqrt{e}}}$) | B. | (2,e) | C. | ($\sqrt{e}$,2) | D. | $(\frac{1}{2},\sqrt{e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com