【題目】在四棱錐中, 平面,底面為直角梯形, , , ,且為線段上的一動(dòng)點(diǎn).
(Ⅰ)若為線段的中點(diǎn),求證: 平面;
(Ⅱ)當(dāng)直線與平面所成角小于,求長度的取值范圍.
【答案】(Ⅰ)證明見解析(Ⅱ)
【解析】試題分析:(1)取PA的中點(diǎn)F,連結(jié)EF,DF,證明四邊形EFDC是平行四邊形得出CE∥DF,故而CE∥平面PAD;
(2)證明BC⊥平面PAC,可知∠PCE為CE與平面PAC所成的角,利用余弦定理得出∠BPC,利用勾股定理得出PE的最大值即可得出PE的范圍.
試題解析:
解:(Ⅰ)取的中點(diǎn),連接,∵為的中點(diǎn).
∴,
∴四邊形是平行四邊形,∴,又平面,
∴平面.
(Ⅱ)方法一:∵,∴,又,∴,∴,又,∴平面
∴與平面所成角就是,∴.
∵,∴,∴.
∵,∴.
方法二:以為坐標(biāo)原點(diǎn),以直線為軸,直線為軸,直線為軸,
則,取線段中點(diǎn),則.
易得,所以為平面的一個(gè)法向量.
可求得.
設(shè), , ,
設(shè)與平面所成的角,
所以,
化簡得,易得,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinx-cosx+2,記函數(shù)f(x)的最小正周期為β,向量a=(2,cosα),b=(1,tan(α+))(0<α<),且a·b=.
(1)求f(x)在區(qū)間上的最值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于二項(xiàng)式(x-1)2 013有下列命題:
(1)該二項(xiàng)展開式中非常數(shù)項(xiàng)的系數(shù)和是1;
(2)該二項(xiàng)展開式中第六項(xiàng)為C2 0136x2 007;
(3)該二項(xiàng)展開式中系數(shù)最大的項(xiàng)是第1 007項(xiàng);
(4)當(dāng)x=2 014時(shí),(x-1)2 013除以2 014的余數(shù)是2 013.
其中正確命題有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),函數(shù).
(1)求函數(shù)的值域;
(2)若對于任意的,總存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圖①②都是表示輸出所有立方小于1 000的正整數(shù)的程序框圖,則圖中應(yīng)分別補(bǔ)充的條件為( )
① 、
A. ①n3≥1 000? ②n3<1 000?
B. ①n3≤1 000?、趎3≥1 000?
C. ①n3<1 000? ②n3≥1 000?
D. ①n3<1 000?、趎3<1 000?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從5名男生和4名女生中選出4人去參加座談會,問:
(1)如果4人中男生和女生各選2人,有多少種選法?
(2)如果男生中的甲與女生中的乙至少要有1人在內(nèi),有多少種選法?
(3)如果4人中必須既有男生又有女生,有多少種選法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列4個(gè)命題:
①“若成等比數(shù)列,則”的逆命題;
②“如果,則”的否命題;
③在中,“若”則“”的逆否命題;
④當(dāng)時(shí),若對恒成立,則的取值范圍是.
其中真命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為推行“高效課堂”教學(xué)法,某數(shù)學(xué)老師分別用傳統(tǒng)教學(xué)和“高效課堂”兩種不同的教學(xué)方法,在同一年級的甲、乙兩個(gè)同層次的班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期末考試后, 分別從兩個(gè)班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖(記成績不低于70分者為“成績優(yōu)良”).
(1)分別計(jì)算甲、乙兩班20個(gè)樣本中,數(shù)學(xué)成績前十名的平均分,并大致判斷那種教學(xué)方法的教學(xué)效果更佳;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方法有關(guān)”?
附:
獨(dú)立性檢驗(yàn)臨界表:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com