過(guò)橢圓+=1(a>b>0)的左焦點(diǎn)F1作x軸的垂線(xiàn)交橢圓于點(diǎn)P,F2為右焦點(diǎn),若∠F1PF2=60°,則橢圓的離心率為(  )
A.B.C.D.
B
由題意知點(diǎn)P的坐標(biāo)為(-c,)或(-c,-),因?yàn)椤螰1PF2=60°,那么=,∴2ac=b2,這樣根據(jù)a,b,c的關(guān)系式化簡(jiǎn)得到結(jié)論為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)(-1,)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)已知點(diǎn)Q(,0),動(dòng)直線(xiàn)l過(guò)點(diǎn)F,且直線(xiàn)l與橢圓C交于A(yíng),B兩點(diǎn),證明:·為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知命題:方程所表示的曲線(xiàn)為焦點(diǎn)在軸上的橢圓;命題:實(shí)數(shù)滿(mǎn)足不等式.
(1)若命題為真,求實(shí)數(shù)的取值范圍;
(2)若命題是命題的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且截拋物線(xiàn)的準(zhǔn)線(xiàn)所得弦長(zhǎng)為,傾斜角為的直線(xiàn)過(guò)點(diǎn).
(1)求該橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問(wèn)拋物線(xiàn)上是否存在一點(diǎn),使得關(guān)于直線(xiàn)對(duì)稱(chēng),若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓C1:+=1(a>b>0)與雙曲線(xiàn)C2:x2-=1有公共的焦點(diǎn),C2的一條漸近線(xiàn)與以C1的長(zhǎng)軸為直徑的圓相交于A(yíng),B兩點(diǎn).若C1恰好將線(xiàn)段AB三等分,則(  )
A.a(chǎn)2=B.a(chǎn)2=13
C.b2=D.b2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)定點(diǎn)M1(0,-3),M2(0,3),動(dòng)點(diǎn)P滿(mǎn)足條件|PM1|+|PM2|=a+(其中a是正常數(shù)),則點(diǎn)P的軌跡是( )
A.橢圓B.線(xiàn)段
C.橢圓或線(xiàn)段D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)F1,F2為橢圓+y2=1的左、右焦點(diǎn),過(guò)橢圓中心任作一直線(xiàn)與橢圓交于P,Q兩點(diǎn),當(dāng)四邊形PF1QF2的面積最大時(shí),·的值等于(  )
A.0B.2C.4D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=sin+cos,g(x)=2sin2.
(1)若α是第一象限角,且f(α)=,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)F1是橢圓y2=1的左焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓上,則·的最大值為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案