不等式x>
1
x
的解集是( 。
A、{x|x<1}
B、{x|x<-1或x>1}
C、{x|-1<x<1}
D、{x|-1<x<0或x>1}
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:分x大于0與小于0兩種情況考慮,分別去分母求出解,即可得到原不等式的解集.
解答: 解:當(dāng)x>0時(shí),原不等式去分母得:x2>1,
解得:x>1或x<-1(舍去),
此時(shí)不等式解集為{x|x>1};
當(dāng)x<0時(shí),去分母得:x2<1,
解得:-1<x<0,
此時(shí)不等式解集為{x|-1<x<0},
綜上,原不等式的解集為{x|-1<x<0或x>1}.
故選D
點(diǎn)評(píng):此題考查了其他不等式的解法,利用了分類討論的思想,是一道基本題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記關(guān)于x的不等式
x-a
x-1
<0的解集為P,不等式|x-1|<1的解集為Q.
(1)若a=3,求P;
(2)若a=-1,求P∪Q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,cosωx+
3
sinωx),
b
=(f(x),cosωx),其中ω>0,且
a
b
,又f(x)的圖象兩相鄰對(duì)稱軸的距離為
3
2
π

(1)求ω的值;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x)=
ax+b
x2+2
(a、b∈R)過已知點(diǎn)(1,-1).
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)試證明函數(shù)f(x)在區(qū)間[2,+∞)是增函數(shù);若函數(shù)f(x)在區(qū)間[c,+∞)(其中c>0)也是增函數(shù),求c的最小值;
(Ⅲ)試討論這個(gè)函數(shù)的單調(diào)性,并求它的最大值、最小值,在給出的坐標(biāo)系(見答題卡)中畫出能體現(xiàn)主要特征的圖簡(jiǎn);
(Ⅳ)求不等式f(sinx-cosx)<f((
3
-1)cosx)
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的二次函數(shù)y=x2-3mx+3的圖象與端點(diǎn)為A(
1
2
5
2
)
、B(3,5)的線段(包括端點(diǎn))只有一個(gè)公共點(diǎn),則m不可能為(  )
A、
1
3
B、
1
2
C、
5
9
D、
7
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有如下幾個(gè)命題:
①若sin2A=sin2B,則△ABC是等腰三角形;
②函數(shù)y=sinx+
4
sinx
(0<x<π)最小值為4;
③若等差數(shù)列{an}前n項(xiàng)和為Sn,則三點(diǎn)(10,
S10
10
),(100,
S100
100
),(110,
S101
110
)共線;
④若a,b為正實(shí)數(shù),代數(shù)式
a2
b2
+
b2
a2
-6(
a
b
+
b
a
)+10
的值恒非負(fù);
其中正確命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了實(shí)現(xiàn)長(zhǎng)沙經(jīng)濟(jì)區(qū)域一體化戰(zhàn)略,湖南省政府計(jì)劃對(duì)長(zhǎng)沙市周邊如圖所示的A,B,C,D,E,F(xiàn),G,H八個(gè)中小城市進(jìn)行綜合規(guī)劃治理,第一期工程擬從這八個(gè)中小城市中選取3個(gè)城市,但要求沒有任何兩個(gè)城市相鄰,則城市A被選中的概率為( 。
A、
3
8
B、
5
28
C、
5
13
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為其前n項(xiàng)和,對(duì)于任意n∈N*,滿足關(guān)系Sn=2an-2.
(Ⅰ)證明:{an}是等比數(shù)列;
(Ⅱ)令bn=log2an,求數(shù)列{
1
bnbn+1
}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐V-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,其它四個(gè)側(cè)面都是側(cè)棱長(zhǎng)為
5
的等腰三角形,AC∩BD=O.
(1)求二面角V-AB-C的大小
(2)求點(diǎn)O到平面VAB的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案