17.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(3,σ),若P(ξ>c+1)=P(ξ<c-1),則c=( 。
A.1B.2C.3D.4

分析 隨機(jī)變量ξ服從正態(tài)分布N(3,σ),得到曲線關(guān)于x=3對稱,根據(jù)P(ξ>c+1)=P(ξ<c-1),結(jié)合曲線的對稱性得到點(diǎn)c+1與點(diǎn)c-1關(guān)于點(diǎn)3對稱的,從而做出常數(shù)c的值得到結(jié)果.

解答 解:隨機(jī)變量ξ服從正態(tài)分布N(3,σ),∴曲線關(guān)于x=3對稱,
∵P(ξ>c+1)=P(ξ<c-1),
∴c+1+c-1=6,
∴c=3,
故選:C.

點(diǎn)評 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查概率的性質(zhì),是一個(gè)基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)i是虛數(shù)單位,如果復(fù)數(shù)$\frac{a-i}{2+i}$的實(shí)部與虛部是互為相反數(shù),那么實(shí)數(shù)a的值為( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)α={-1,1,$\frac{1}{2}$},則使函數(shù)y=xα的定義域?yàn)镽且為奇函數(shù)的所有α的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,某養(yǎng)路處建造圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用).已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個(gè)更大的圓錐形倉庫,以存放更多的食鹽,現(xiàn)有兩個(gè)方案:一是新建倉庫的底面直徑比原來的大4m(高不變),二是高度增加4m(底面直徑不變).
(1)分別計(jì)算按這兩個(gè)方案所建倉庫的體積;
(2)分別計(jì)算按這兩個(gè)方案所建倉庫的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知實(shí)數(shù)x,y滿足x2+y2=4(y≥0),則m=$\sqrt{3}$x+y的取值范圍是(  )
A.(-2$\sqrt{3}$,4)B.[-2$\sqrt{3}$,4]C.[-4,4]D.[-4,2$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{i}{{\sqrt{3}-3i}}$對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x,y滿足約束條件$\left\{\begin{array}{l}x+y≤5\\ x-4y≤0\\ x-y+3≥0\end{array}\right.$,則下列目標(biāo)函數(shù)中,在點(diǎn)(4,1)處取得最大值的是( 。
A.$z=\frac{1}{5}x-y$B.z=3x+yC.$z=-\frac{1}{5}x-y$D.z=3x-y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=emx+x2-mx.
(1)討論f(x)的單調(diào)性;
(2)若對于任意x1,x2∈[-1,1],都有f(x1)-f(x2)≤e-1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x}{a}-{e^x}({a>0})$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[1,2]上的最大值;
(3)若存在x1,x2(x1<x2),使得f(x1)=f(x2)=0,證明:$\frac{x_1}{x_2}$<ae.

查看答案和解析>>

同步練習(xí)冊答案