【題目】在數(shù)列{an}中, ,an+1= .
(1)計(jì)算a2 , a3 , a4并猜想數(shù)列{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明你的猜想.
【答案】
(1)解:∵ ,an+1= .
∴a2= = ,a3= = ,a4= =
猜想數(shù)列{an}的通項(xiàng)公式為an=
(2)解:①n=1時(shí),a1= = 滿足通項(xiàng)公式;
②假設(shè)當(dāng)n=k時(shí)猜想成立,即 ,則 = = ,
當(dāng)n=k+1時(shí)猜想也成立.
綜合①②,對(duì)n∈N*猜想都成立
【解析】(1)根據(jù) ,an+1= 可求出a2 , a3 , a4的值,根據(jù)前四項(xiàng)的值可猜想數(shù)列{an}的通項(xiàng)公式;(2)根據(jù)數(shù)學(xué)歸納法的步驟進(jìn)行證明即可.
【考點(diǎn)精析】利用數(shù)列的通項(xiàng)公式和數(shù)學(xué)歸納法的定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式;數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣1=0},B={x|x2﹣2ax+b=0},若A∪B=A,求實(shí)數(shù)a,b滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式x2+mx+3≤0的解集為A=[1,n],集合B={x|x2﹣ax+a≤0}.
(1)求m﹣n的值;
(2)若A∪B=A,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= +lg(x﹣1)+(x﹣3)0 的定義域?yàn)椋?)
A.{x|1<x≤4}
B.{x|1<x≤4且x≠3}
C.{x|1≤x≤4且x≠3}
D.{x|x≥4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣5x+4lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若m,n∈[﹣1,1],m+n≠0時(shí),有 >0.
(Ⅰ)證明f(x)在[﹣1,1]上是增函數(shù);
(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
(Ⅲ)若f(x)≤t2﹣2at+1對(duì)x∈[﹣1,1],a∈[﹣1,1]恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用M[A]表示非空集合A中的元素個(gè)數(shù),記|A﹣B|= ,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={(x,y)|y=a|x|,x∈R},B={(x,y)|y=x+a,x∈R},已知集合A∩B中有且僅有一個(gè)元素,則常數(shù)a的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com