已知等比數(shù)列{an},a1=2,a4=16.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log2an,求數(shù)列{bn}的前n項和Sn
考點:等比數(shù)列的通項公式,等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:(1)設(shè)等比數(shù)列{an}的公比為q,利用等比數(shù)列的通項公式即可得出.
(2)由(1)利用對數(shù)的運算法則可得bn=log2an=n,再利用等差數(shù)列的前n項和公式即可得出.
解答: 解:(1)設(shè)等比數(shù)列{an}的公比為q,∵a1=2,a4=16.
∴16=2×q3,解得q=2.
an=a1qn-1=2n
(2)由(1)可得bn=log2an=n,
∴Sn=1+2+…+n=
n(n+1)
2
點評:本題考查了等比數(shù)列的通項公式、對數(shù)的運算法則、等差數(shù)列的前n項和公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為2的正方體ABCD-A1B1C1D1中,O為正方形A1B1C1D1的中心,點P在棱CC1上,且CC1=2PC.
(1)求直線AP與平面BCC1B1所成角的余弦值;
(2)求二面角P-AD1-D的平面角的余弦值;
(3)求點O到平面AD1P的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a+b+c=1,若不等式2a2+3b2+c2≥|x+1|對a,b,c∈R恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)敘述并證明面面垂直性質(zhì)定理;
(Ⅱ)P(x0,y0)到直線L:Ax+By+C=0的距離d=
|Ax0+By0+C|
A2+B2
,并證明此公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的方程為
x2
4
+
y2
16
=1.
(Ⅰ)求橢圓C的長軸長及離心率;
(Ⅱ)已知M為橢圓C的左頂點,直線l過(1,0)且與橢圓C交于A,B兩點(不與M重合).求證:∠AMB>90°(或者證明△AMB是鈍角三角形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是數(shù)列{an}的前n項和,點P(an,Sn)在直線y=2x-2上
(1)求數(shù)列{an}的通項公式;
(2)記bn=2(1-
1
an
),數(shù)列{bn}的前n項和為Tn,若Tn≥a2-2恒成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線a在平面α上,直線b不在平面α上,且a∥b,求證:b∥α.
(注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為完整的證明)
證明:因為直線不在平面α上,所以
 
①或b∩α=A,
下面b∩α=A不可能.
假設(shè)b∩α=A,
因為
 
②,所以A∉a.
在平面α上過作直線c∥a,
根據(jù)
 
③,可得
 
④,
這和b∩c=A矛盾,所以b∩α=A不可能.
所以b∥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(x+1)4(2x2+1)=a0+a1(x-1)+a2(x-1)2+…+a6(x-1)6,則a0+a1+a2+…+a6的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0,現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0;
②f(0)f(1)<0;
③f(0)f(3)>0;
④f(0)f(3)<0;
⑤abc>4;
⑥abc<4;
其中正確結(jié)論的序號是
 
.(寫出所有正確的序號)

查看答案和解析>>

同步練習(xí)冊答案