下列有關(guān)命題的說(shuō)法錯(cuò)誤的是(  )
A、“若a2+b2=0,則a,b全為0”的逆命題是“若a,b不全為0,則a2+b2≠0”
B、“x>0”是“x≠0”的必要而不充分條件
C、若p∧q為假命題,且“¬p”為假命題,則q為假命題
D、對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0
考點(diǎn):命題的真假判斷與應(yīng)用,四種命題,四種命題間的逆否關(guān)系,四種命題的真假關(guān)系,充分條件
專題:常規(guī)題型,創(chuàng)新題型,高考數(shù)學(xué)專題
分析:本題考的是命題的四種形式,充分性必要性,簡(jiǎn)單的邏輯聯(lián)接詞及全稱量詞與存在量詞
解答: 解:A.考的是命題中的正面用詞與反面用詞,例如:全?不全,都是?不都是,至多有一個(gè)?至少有兩個(gè)等等故A正確
B.x>0能推出x≠0,但X≠0就推不出X一定大于0故B不正確
C.“¬p“為假命題,則p為真命題,又p∧q為假命題,所以q為假命題.故C正確
D.存在性命題p:?x∈M,p(x);則存在性命題p的否定:“¬p”:?x∈M,¬P(x)故D正確
故選:B.
點(diǎn)評(píng):在解答本題時(shí)要熟悉命題的四種形式,充分性必要性,簡(jiǎn)單的邏輯聯(lián)接詞及全稱量詞與存在量詞的概念
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2,則“f(a)>f(b)”是“|a|>|b|”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿足a2=2a1,且a2+1是a1與a3的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an-2log2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4名大學(xué)生到三家企業(yè)應(yīng)聘,每名大學(xué)生至多被一家企業(yè)錄用,則每家企業(yè)至少錄用一名大學(xué)生的情況有( 。
A、24種B、36種
C、48種D、60種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人仿照福利彩票快3設(shè)計(jì)了一款游戲,有一個(gè)不透明的紙箱里裝有標(biāo)號(hào)分別為1,2,3,4,5,6形狀大小相同的小球,游戲參加者需要三次有放回的從箱子里取出一個(gè)小球,分別記下小球上的數(shù)字,若三次都是同一個(gè)數(shù)字,獲一等獎(jiǎng);若三次小球上的數(shù)字都是連號(hào)(不考慮順序),獲二等獎(jiǎng);其它情況無(wú)獎(jiǎng).參加游戲者需要購(gòu)買(mǎi)20元(包括卡片成本費(fèi)為4元)的精美卡片一張,憑次卡片參加一次摸球活動(dòng)
(1)某人購(gòu)買(mǎi)兩張卡片參加兩次游戲,求至少有一次獲獎(jiǎng)的概率;
(2)如果獎(jiǎng)勵(lì)改為返還一定價(jià)值的禮品,一等獎(jiǎng)禮品價(jià)值是二等獎(jiǎng)的2倍,統(tǒng)計(jì)表明:每天的銷量y(張)與一等獎(jiǎng)的獎(jiǎng)禮品價(jià)值x(元)的關(guān)系式為y=
x
4
+24.問(wèn)x設(shè)定為多少最理想?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}各項(xiàng)均為正數(shù),且滿足log3an+1=log3an+1(n∈N*),且a2+a4+a6=3,則log3(a5+a7+a9)的值是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x+1,-1≤x<0
ex,0≤x≤1
的圖象與直線x=1及x軸所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={x|2≤x<7,x∈N}中的元素個(gè)數(shù)是
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β是銳角,sin(α+β)=
11
14
,cosα=
1
7
,求cosβ.

查看答案和解析>>

同步練習(xí)冊(cè)答案