已知銳角A,B滿足tan(A+B)=2tanA,則tanB的最大值為______.
∵tanB=tan(A+B-A)=
tan(A+B)-tanA
1+tan(A+B)•tanA
=
2tanA-tanA
1+2tanA2
=
tanA
1+2tan2A
=
1
1
tanA
+2tanA

∵A為銳角,
∴tanA>0
1
tanA
+2tanA
≥2
2

當(dāng)且僅當(dāng)2tanA=
1
tanA
時(shí)取“=”號(hào),即tanA=
2
2

∴0<tanB≤
2
4

∴tanB最大值是
2
4

故答案為:
2
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:吉林省吉林一中2011-2012學(xué)年高三階段驗(yàn)收試題數(shù)學(xué) 題型:解答題

 

(理)已知數(shù)列{an}的前n項(xiàng)和,且=1,

.

(I)求數(shù)列{an}的通項(xiàng)公式;

(II)已知定理:“若函數(shù)f(x)在區(qū)間D上是凹函數(shù),x>y(x,y∈D),且f’(x)存在,則有

< f’(x)”.若且函數(shù)y=xn+1在(0,+∞)上是凹函數(shù),試判斷bn與bn+1的大;

(III)求證:≤bn<2.

(文)如圖,|AB|=2,O為AB中點(diǎn),直線過(guò)B且垂直于AB,過(guò)A的動(dòng)直線與交于點(diǎn)C,點(diǎn)M在線段AC上,滿足=.

(I)求點(diǎn)M的軌跡方程;

(II)若過(guò)B點(diǎn)且斜率為- 的直線與軌跡M交于

         點(diǎn)P,點(diǎn)Q(t,0)是x軸上任意一點(diǎn),求當(dāng)ΔBPQ為

         銳角三角形時(shí)t的取值范圍.

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案