精英家教網 > 高中數學 > 題目詳情
(2012•北京模擬)如果數列的前n項和Sn=a1+a2+a3+…+an滿足條件log2Sn=n,那么{an}(  )
分析:由題意可得Sn=2n,由此可得通項公式,由此可判斷是不是等差數列或等比數列.
解答:解:由題意可得:Sn=2n,
故當n=1時,a1=S1=2,
當n≥2時,an=Sn-Sn-1=2n-2n-1=2n-1,
當n=1時,上式不適合,故{an}不是等比數列;
又an+1-an=2n-2n-1=2n-1,不是常數,故{an}不是等差數列.
故選D
點評:本題考查等差數列和等比數列的定義,涉及由和求通項,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•北京模擬)已知a、b、c、d是公比為2的等比數列,則
2a+b
2c+d
=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京模擬)函數y=
log
2
3
(3x-2)
的定義域為
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京模擬)如圖,在四棱錐P-ABCD中,PA⊥平面AC,且四邊形ABCD是矩形,則該四棱錐的四個側面中是直角三角形的有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京模擬)在數列{an}中,a1=
3
,an+1=
1+
a
2
n
-1
an
(n∈N*)
.數列{bn}滿足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求數列{bn}的通項公式;
(3)設數列{bn}的前n項和為Sn.若對于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京模擬)甲、乙、丙、丁四個人進行傳球練習,每次球從一個人的手中傳入其余三個人中的任意一個人的手中.如果由甲開始作第1次傳球,經過n次傳球后,球仍在甲手中的所有不同的傳球種數共有an種.
(如,第一次傳球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)寫出 an+1與 an的關系式(不必證明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步練習冊答案