【題目】已知圓C:(x﹣3)2+(y﹣4)2=4,直線l過(guò)定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點(diǎn),若|PQ|=2 ,求此時(shí)直線l的方程.
【答案】
(1)解:若直線l的斜率不存在,則直線l:x=1,符合題意.
若直線l斜率存在,設(shè)直線l的方程為y=k(x﹣1),即kx﹣y﹣k=0.
由題意知,圓心(3,4)到已知直線l的距離等于半徑2,即: =2,解之得k= ,
此時(shí)直線的方程為3x﹣4y﹣3=0.
綜上可得,所求直線l的方程是x=1或3x﹣4y﹣3=0
(2)解:直線與圓相交,斜率必定存在,且不為0,設(shè)直線方程為kx﹣y﹣k=0,
因?yàn)閨PQ|=2 =2 =2 ,求得弦心距d= ,
即 = ,求得 k=1或k=7,
所求直線l方程為x﹣y﹣1=0或7x﹣y﹣7=0
【解析】(1)分直線的斜率存在和不存在兩種情況,分別根據(jù)直線和圓相切的性質(zhì)求得直線的方程,綜合可得結(jié)論.(2)用點(diǎn)斜式設(shè)出直線的方程,利用條件以及點(diǎn)到直線的距離公式,弦長(zhǎng)公式求出斜率的值,可得直線的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程x2+(a2﹣1)x+a﹣2=0的兩根滿(mǎn)足(x1﹣1)(x2﹣1)<0,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,其中為自然對(duì)數(shù)的底數(shù),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)既有極大值,又有極小值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)
在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1).當(dāng)m變化時(shí),解答下列問(wèn)題:
(1)能否出現(xiàn)AC⊥BC的情況?說(shuō)明理由;
(2)證明過(guò)A,B,C三點(diǎn)的圓在y軸上截得的弦長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,DC∥AB,PA=1,AB=2,PD=BC= .
(1)求證:平面PAD⊥平面PCD;
(2)試在棱PB上確定一點(diǎn)E,使截面AEC把該幾何體分成的兩部分PDCEA與EACB的體積比為2:1;
(3)在(2)的條件下,求二面角E﹣AC﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,所有棱長(zhǎng)均為2,O是底面正方形ABCD中心,E為PC中點(diǎn),則直線OE與直線PD所成角為( )
A.30°
B.60°
C.45°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)為何值時(shí), 軸為曲線的切線;
(2)用表示中的最小值,設(shè)函數(shù),討論零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x≥1時(shí),f(x)=2x﹣1,則f( ),f( ),f( )的大小關(guān)系是( )
A.f( )<f( )<f( )
B.f( )<f( )<f( )??
C.f( )<f( )<f( )
D.f( )<f( )<f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知 .
(1)求角A的大。
(2)若 ,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com