2.下列說法中正確的是(  )
A.已知f(x)是可導(dǎo)函數(shù),則“f'(x0)=0”是“x0是f(x)的極值點(diǎn)”的充分不必要條件
B.“若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是“若α≠$\frac{π}{6}$,則sinα≠$\frac{1}{2}$”
C.若p:?x0∈R,x02-x0-1>0,則?p:?x∈R,x2-x-1<0
D.若p∧q為假命題,則p,q均為假命題

分析 根據(jù)充要條件的定義,可判斷A;寫出原命題的否命題,可判斷B;寫出原命題的否定命題,可判斷C;根據(jù)復(fù)合命題真假判斷的真值表,可判斷D.

解答 解:已知f(x)是可導(dǎo)函數(shù),則“f'(x0)=0”是“x0是f(x)的極值點(diǎn)”的必要不充分條件,故A錯(cuò)誤;
“若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是“若α≠$\frac{π}{6}$,則sinα≠$\frac{1}{2}$”,故B正確;
若p:?x0∈R,x02-x0-1>0,則?p:?x∈R,x2-x-1≤0,故C錯(cuò)誤;
若p∧q為假命題,則p,q存在至少一個(gè)假命題,但不一定均為假命題,
故選:B

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,命題的否定,充要條件,四種命題等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)是偶函數(shù),其定義域?yàn)椋?∞,+∞),且在[0,+∞)上是減函數(shù),則不等式f(lgx)>f(-1)成立的 x的取值范圍為( 。
A.$(\frac{1}{10},10)$B.$(0,\frac{1}{10})$C.(0,10)D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(a+2)lnx+$\frac{1}{2}$x2-2ax.
(1)當(dāng)a=1時(shí),求f(x)在(1,f(1))處的切線方程;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)α為銳角,若cos(α+$\frac{π}{6}$)=$\frac{1}{2}$,則sin(2α+$\frac{π}{12}}$)的值為$\frac{{\sqrt{6}+\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是( 。
A.命題“?x∈R,使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.命題p:“$?x∈R,sinx+cosx≤\sqrt{2}$”,則¬p是真命題
C.?α,β∈R,使得sin(α-β)=sinα-sinβ成立
D.“x=-1”是“x2-2x-3=0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)之和為Sn滿足Sn=2an-2.
(Ⅰ)數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{(2n-1)•an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=2x+log3$\frac{x-1}{1-ax}$為奇函數(shù),a為常數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性,并寫出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=-2x2+6x(-2<x≤2)的最大值是$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={1,2,3},集合B={x|a+1<x<6a-1},其中a∈R.
(1)寫出集合A的所有真子集;
(2)若A∩B={3},求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案