6.已知集合A中的元素(x,y)在映射f下對應(yīng)B中的元素(x+2y,2x-y),則B中元素(3,1)在A中的對應(yīng)元素是(1,1).

分析 根據(jù)兩個集合之間的對應(yīng)關(guān)系,寫出B集合與所給的(3,1)對應(yīng)的關(guān)于x,y的方程組,解方程組即可.

解答 解:∵從A到B的映射f:(x,y)→(x+2y,2x-y),
∴在映射f下B中的元素(3,1)對應(yīng)的A的元素滿足x+2y=3,2x-y=1
解得x=1,y=1.
則在映射f下B中的元素(3,1)對應(yīng)的A中元素為(1,1).
故答案為:(1,1)

點評 本題考查映射,本題解題的關(guān)鍵是看出兩個集合的對應(yīng)的關(guān)系,寫出兩個集合對應(yīng)的變量的關(guān)系式,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在兩坐標(biāo)軸上截距均為m(m∈R)的直線l1與直線l2:2x+2y-3=0的距離為$\sqrt{2}$,則m=(  )
A.$\frac{7}{2}$B.7C.-$\frac{1}{2}$或$\frac{7}{2}$D.-1或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在實數(shù)集R上的函數(shù)f(x)滿足下列三個條件
①對任意的x∈R,都有f(x+4)=f(x).
②對于任意的x1,x2∈[0,2],x1<x2,都有f(x1)<f(x2).
③函數(shù)f(x+2)的圖象關(guān)于y軸對稱.則下列結(jié)論中,正確的是( 。
A.f(4.5)<f(6.5)<f(7)B.f(4.5)<f(7)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(7)<f(4.5)<f(6.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.${∫}_{0}^{2π}$|sinx|dx等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=log4$\sqrt{x}$•log${\;}_{\sqrt{2}}$(2x)的值域用區(qū)間表示為[-$\frac{1}{8}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+3}}(n∈{N^*})$,則求{an}的通項公式an=$\frac{2}{{{3^n}-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)在閉區(qū)間[-1,2]上的圖象如圖所示,則此函數(shù)的解析式為y=$\left\{\begin{array}{l}{x+1,-1≤x<0}\\{-\frac{1}{2}x,0≤x≤2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計算:
(1)$\root{4}{{(3-π{)^4}}}$+(0.008)${\;}^{\frac{1}{3}}$-(0.25)${\;}^{\frac{1}{2}}$×($\frac{1}{{\sqrt{2}}}$)-4
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2009)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,三棱錐S-ABC,E,F(xiàn)分別在線段AB,AC上,EF∥BC,△ABC,△SEF均是等邊三角形,且平面SEF⊥平面ABC,若BC=4,EF=a,O為EF的中點.
(1)求證:BC⊥SA.
(2)a為何值時,BE⊥平面SCO.

查看答案和解析>>

同步練習(xí)冊答案