5.已知p:?t∈R,函數(shù)f(x)=$\frac{{t{e^x}+{e^{-x}}}}{2}$在R上單調(diào)遞增;q:?a∈R,函數(shù)g(x)=ln(x2+ax+1)為偶函數(shù).則下列命題中真命題的是( 。
A.p∧¬qB.¬p∨qC.p∨¬qD.p∧q

分析 對(duì)于命題p:取t=0,函數(shù)f(x)=$\frac{1}{2{e}^{x}}$在R上單調(diào)遞減,即可判斷出真假.對(duì)于q:取a=0,函數(shù)g(x)=ln(x2+1)為偶函數(shù),即可判斷出真假.再利用復(fù)合命題真假的判定方法即可得出.

解答 解:對(duì)于命題p:取t=0,函數(shù)f(x)=$\frac{1}{2{e}^{x}}$在R上單調(diào)遞減,因此是假命題.
對(duì)于q:取a=0,函數(shù)g(x)=ln(x2+1)為偶函數(shù),是真命題.
則下列命題中真命題的是(¬p)∨q.
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、復(fù)合命題真假的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知F1、F2是雙曲線的兩焦點(diǎn),過(guò)F2且垂直于實(shí)軸的直線交雙曲線于P、Q兩點(diǎn),∠PF1Q=60°,則離心率e=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)是R上的增函數(shù),且f(sinω)+f(-cosω)>f(-sinω)+f(cosω),其中ω是銳角,并且使得g(x)=sin(ωx+$\frac{π}{4}$)在($\frac{π}{2}$,π)上單調(diào)遞減,則ω的取值范圍是(  )
A.($\frac{π}{4}$,$\frac{5}{4}$]B.[$\frac{5}{4}$,$\frac{π}{2}$)C.[$\frac{1}{2}$,$\frac{π}{4}$)D.[$\frac{1}{2}$,$\frac{5}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.給出下列四個(gè)命題:
①若x>0,且x≠1,則lgx+$\frac{1}{lgx}$≥2; 
②f(x)=lg(x2+ax+1),定義域?yàn)镽,則-2<a<2;
③函數(shù)y=cos(2x-$\frac{π}{3}$)的一條對(duì)稱(chēng)軸是直線x=$\frac{5}{12}$π;
④若x∈R,則“復(fù)數(shù)z=(1-x2)+(1+x)i為純虛數(shù)”是“l(fā)g|x|=0”必要不充分條件.
其中,所有正確命題的序號(hào)是  ②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)f(x)=x2ln(-x+$\sqrt{{x^2}+1}}$)+1,若f(a)=11,則f(-a)=-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=asinx•cosx-$\sqrt{3}$acos2x+$\frac{{\sqrt{3}}}{2}$a+b(a>0).
(Ⅰ)寫(xiě)出函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)x∈[0,$\frac{π}{2}$],f(x)的最小值是-$\sqrt{3}$,最大值是2,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知a,b是空間兩條直線,α是空間一平面,b?α.若p:a∥b;q:a∥α,則( 。
A.p是q的充分不必要條件
B.p是q的充分條件,但不是q的必要條件
C.p是q的必要條件,但不是q的充分條件
D.p既不是q的必要條件,也不是q的充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a∈R,i是虛數(shù)單位,若(1-i)(1+ai)=2,則a=( 。
A.1B.$\sqrt{5}$C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,an-an-1=2(n≥2)
(I)求數(shù)列{an}的通項(xiàng)公式和它的前n項(xiàng)和Sn;
(Ⅱ)設(shè)bn=(an+1)•2an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案